1) Interest is the borrower's payment to the owner of an asset, for its use.
Answer: TRUE
Difficulty: 1 Easy
Topic: Present and Future Value Concepts
Learning Objective: B-C1 Describe the earning of interest and the concepts of present and future values.
Bloom's: Remember
AACSB: Communication
AICPA: BB Industry; FN Measurement
2) From the perspective of an account holder, a savings account is a liability with interest.
Answer: FALSE
Difficulty: 1 Easy
Topic: Present and Future Value Concepts
Learning Objective: B-C1 Describe the earning of interest and the concepts of present and future values.
Bloom's: Remember
AACSB: Communication
AICPA: BB Industry; FN Measurement
3) An interest rate is also called a discount rate.
Answer: TRUE
Difficulty: 1 Easy
Topic: Present Value of a Single Amount
Learning Objective: B-P1 Apply present value concepts to a single amount by using interest tables.
Bloom's: Remember
AACSB: Communication
AICPA: BB Industry; FN Measurement
4) Present and future value computations enable companies to measure or estimate the interest component of holding assets or liabilities over time.
Answer: TRUE
Difficulty: 2 Medium
Topic: Present and Future Value Concepts
Learning Objective: B-C1 Describe the earning of interest and the concepts of present and future values.
Bloom's: Understand
AACSB: Communication
AICPA: BB Industry; FN Measurement
5) The number of periods in a present value calculation may only be expressed in years.
Answer: FALSE
Difficulty: 1 Easy
Topic: Present Value of a Single Amount
Learning Objective: B-P1 Apply present value concepts to a single amount by using interest tables.
Bloom's: Remember
AACSB: Communication
AICPA: BB Industry; FN Measurement
6) Present Value of 1
Periods | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10% | 12% |
3 | 0.9151 | 0.8890 | 0.8638 | 0.8396 | 0.8163 | 0.7938 | 0.7722 | 0.7513 | 0.7118 |
4 | 0.8885 | 0.8548 | 0.8227 | 0.7921 | 0.7629 | 0.7350 | 0.7084 | 0.6830 | 0.6355 |
5 | 0.8626 | 0.8219 | 0.7835 | 0.7473 | 0.7130 | 0.6806 | 0.6499 | 0.6209 | 0.5674 |
6 | 0.8375 | 0.7903 | 0.7462 | 0.7050 | 0.6663 | 0.6302 | 0.5963 | 0.5645 | 0.5066 |
7 | 0.8131 | 0.7599 | 0.7107 | 0.6651 | 0.6227 | 0.5835 | 0.5470 | 0.5132 | 0.4523 |
8 | 0.7894 | 0.7307 | 0.6768 | 0.6274 | 0.5820 | 0.5403 | 0.5019 | 0.4665 | 0.4039 |
9 | 0.7664 | 0.7026 | 0.6446 | 0.5919 | 0.5439 | 0.5002 | 0.4604 | 0.4241 | 0.3606 |
10 | 0.7441 | 0.6756 | 0.6139 | 0.5584 | 0.5083 | 0.4632 | 0.4224 | 0.3855 | 0.3220 |
Future Value of 1
Periods | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10% | 12% |
3 | 1.0927 | 1.1249 | 1.1576 | 1.1910 | 1.2250 | 1.2597 | 1.2950 | 1.3310 | 1.4049 |
4 | 1.1255 | 1.1699 | 1.2155 | 1.2625 | 1.3108 | 1.3605 | 1.4116 | 1.4641 | 1.5735 |
5 | 1.1593 | 1.2167 | 1.2763 | 1.3382 | 1.4026 | 1.4693 | 1.5386 | 1.6105 | 1.7623 |
6 | 1.1941 | 1.2653 | 1.3401 | 1.4185 | 1.5007 | 1.5869 | 1.6771 | 1.7716 | 1.9738 |
7 | 1.2299 | 1.3159 | 1.4071 | 1.5036 | 1.6058 | 1.7138 | 1.8280 | 1.9487 | 2.2107 |
8 | 1.2668 | 1.3686 | 1.4775 | 1.5938 | 1.7182 | 1.8509 | 1.9926 | 2.1436 | 2.4760 |
9 | 1.3048 | 1.4233 | 1.5513 | 1.6895 | 1.8385 | 1.9990 | 2.1719 | 2.3579 | 2.7731 |
10 | 1.3439 | 1.4802 | 1.6289 | 1.7908 | 1.9672 | 2.1589 | 2.3674 | 2.5937 | 3.1058 |
Present Value of an Annuity of 1
Periods | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10% | 12% |
3 | 2.8286 | 2.7751 | 2.7232 | 2.6730 | 2.6243 | 2.5771 | 2.5313 | 2.4869 | 2.4018 |
4 | 3.7171 | 3.6299 | 3.5460 | 3.4651 | 3.3872 | 3.3121 | 3.2397 | 3.1699 | 3.0373 |
5 | 4.5797 | 4.4518 | 4.3295 | 4.2124 | 4.1002 | 3.9927 | 3.8897 | 3.7908 | 3.6048 |
6 | 5.4172 | 5.2421 | 5.0757 | 4.9173 | 4.7665 | 4.6229 | 4.4859 | 4.3553 | 4.1114 |
7 | 6.2303 | 6.0021 | 5.7864 | 5.5824 | 5.3893 | 5.2064 | 5.0330 | 4.8684 | 4.5638 |
8 | 7.0197 | 6.7327 | 6.4632 | 6.2098 | 5.9713 | 5.7466 | 5.5348 | 5.3349 | 4.9676 |
9 | 7.7861 | 7.4353 | 7.1078 | 6.8017 | 6.5152 | 6.2469 | 5.9952 | 5.7950 | 5.3282 |
10 | 8.5302 | 8.1109 | 7.7217 | 7.3601 | 7.0236 | 6.7101 | 6.4177 | 6.1446 | 5.6502 |
Future Value of an Annuity of 1
Periods | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10% | 12% |
3 | 3.0909 | 3.1216 | 3.1525 | 3.1836 | 3.2149 | 3.2464 | 3.2781 | 3.3100 | 3.3744 |
4 | 4.1836 | 4.2465 | 4.3101 | 4.3746 | 4.4399 | 4.5061 | 4.5731 | 4.6410 | 4.7793 |
5 | 5.3091 | 5.4163 | 5.5256 | 5.6371 | 5.7507 | 5.8666 | 5.9847 | 6.1051 | 6.3528 |
6 | 6.4684 | 6.6330 | 6.8019 | 6.9753 | 7.1533 | 7.3359 | 7.5233 | 7.7156 | 8.1152 |
7 | 7.6625 | 7.8983 | 8.1420 | 8.3938 | 8.6540 | 8.9228 | 9.2004 | 9.4872 | 10.0890 |
8 | 8.8923 | 9.2142 | 9.5491 | 9.8975 | 10.2598 | 10.6366 | 11.0285 | 11.4359 | 12.2997 |
9 | 10.1591 | 10.5828 | 11.0266 | 11.4913 | 11.9780 | 12.4876 | 13.0210 | 13.5795 | 14.7757 |
10 | 11.4639 | 12.0061 | 12.5779 | 13.1808 | 13.8164 | 14.4866 | 15.1929 | 15.9374 | 17.5487 |
The present value factor for determining the present value of $6,300 to be received three years from today at 10% interest compounded semiannually is 0.7462. (PV of $1, FV of $1, PVA of $1, and FVA of $1) (Use appropriate factor(s) from the tables provided.)
Answer: TRUE
Difficulty: 2 Medium
Topic: Present Value of a Single Amount
Learning Objective: B-P1 Apply present value concepts to a single amount by using interest tables.
Bloom's: Understand
AACSB: Communication
AICPA: BB Industry; FN Measurement
7) The present value of 1 formula is often useful when a borrowed asset must be repaid in full at a later date and the borrower wants to know the worth of the asset at the future date.
Answer: FALSE
Difficulty: 2 Medium
Topic: Present Value of a Single Amount
Learning Objective: B-P1 Apply present value concepts to a single amount by using interest tables.
Bloom's: Understand
AACSB: Communication
AICPA: BB Industry; FN Measurement
8) In a present value or future value table, the length of one time period may be interpreted as one year, one month, or any other length of time.
Answer: TRUE
Difficulty: 1 Easy
Topic: Present Value of a Single Amount; Future Value of Single Amount
Learning Objective: B-P1 Apply present value concepts to a single amount by using interest tables.; B-P2 Apply future value concepts to a single amount by using interest tables.
Bloom's: Remember
AACSB: Communication
AICPA: BB Industry; FN Measurement
9) Present Value of 1
Periods | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10% | 12% |
3 | 0.9151 | 0.8890 | 0.8638 | 0.8396 | 0.8163 | 0.7938 | 0.7722 | 0.7513 | 0.7118 |
4 | 0.8885 | 0.8548 | 0.8227 | 0.7921 | 0.7629 | 0.7350 | 0.7084 | 0.6830 | 0.6355 |
5 | 0.8626 | 0.8219 | 0.7835 | 0.7473 | 0.7130 | 0.6806 | 0.6499 | 0.6209 | 0.5674 |
6 | 0.8375 | 0.7903 | 0.7462 | 0.7050 | 0.6663 | 0.6302 | 0.5963 | 0.5645 | 0.5066 |
7 | 0.8131 | 0.7599 | 0.7107 | 0.6651 | 0.6227 | 0.5835 | 0.5470 | 0.5132 | 0.4523 |
8 | 0.7894 | 0.7307 | 0.6768 | 0.6274 | 0.5820 | 0.5403 | 0.5019 | 0.4665 | 0.4039 |
9 | 0.7664 | 0.7026 | 0.6446 | 0.5919 | 0.5439 | 0.5002 | 0.4604 | 0.4241 | 0.3606 |
10 | 0.7441 | 0.6756 | 0.6139 | 0.5584 | 0.5083 | 0.4632 | 0.4224 | 0.3855 | 0.3220 |
Future Value of 1
Periods | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10% | 12% |
3 | 1.0927 | 1.1249 | 1.1576 | 1.1910 | 1.2250 | 1.2597 | 1.2950 | 1.3310 | 1.4049 |
4 | 1.1255 | 1.1699 | 1.2155 | 1.2625 | 1.3108 | 1.3605 | 1.4116 | 1.4641 | 1.5735 |
5 | 1.1593 | 1.2167 | 1.2763 | 1.3382 | 1.4026 | 1.4693 | 1.5386 | 1.6105 | 1.7623 |
6 | 1.1941 | 1.2653 | 1.3401 | 1.4185 | 1.5007 | 1.5869 | 1.6771 | 1.7716 | 1.9738 |
7 | 1.2299 | 1.3159 | 1.4071 | 1.5036 | 1.6058 | 1.7138 | 1.8280 | 1.9487 | 2.2107 |
8 | 1.2668 | 1.3686 | 1.4775 | 1.5938 | 1.7182 | 1.8509 | 1.9926 | 2.1436 | 2.4760 |
9 | 1.3048 | 1.4233 | 1.5513 | 1.6895 | 1.8385 | 1.9990 | 2.1719 | 2.3579 | 2.7731 |
10 | 1.3439 | 1.4802 | 1.6289 | 1.7908 | 1.9672 | 2.1589 | 2.3674 | 2.5937 | 3.1058 |
Present Value of an Annuity of 1
Periods | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10% | 12% |
3 | 2.8286 | 2.7751 | 2.7232 | 2.6730 | 2.6243 | 2.5771 | 2.5313 | 2.4869 | 2.4018 |
4 | 3.7171 | 3.6299 | 3.5460 | 3.4651 | 3.3872 | 3.3121 | 3.2397 | 3.1699 | 3.0373 |
5 | 4.5797 | 4.4518 | 4.3295 | 4.2124 | 4.1002 | 3.9927 | 3.8897 | 3.7908 | 3.6048 |
6 | 5.4172 | 5.2421 | 5.0757 | 4.9173 | 4.7665 | 4.6229 | 4.4859 | 4.3553 | 4.1114 |
7 | 6.2303 | 6.0021 | 5.7864 | 5.5824 | 5.3893 | 5.2064 | 5.0330 | 4.8684 | 4.5638 |
8 | 7.0197 | 6.7327 | 6.4632 | 6.2098 | 5.9713 | 5.7466 | 5.5348 | 5.3349 | 4.9676 |
9 | 7.7861 | 7.4353 | 7.1078 | 6.8017 | 6.5152 | 6.2469 | 5.9952 | 5.7950 | 5.3282 |
10 | 8.5302 | 8.1109 | 7.7217 | 7.3601 | 7.0236 | 6.7101 | 6.4177 | 6.1446 | 5.6502 |
Future Value of an Annuity of 1
Periods | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10% | 12% |
3 | 3.0909 | 3.1216 | 3.1525 | 3.1836 | 3.2149 | 3.2464 | 3.2781 | 3.3100 | 3.3744 |
4 | 4.1836 | 4.2465 | 4.3101 | 4.3746 | 4.4399 | 4.5061 | 4.5731 | 4.6410 | 4.7793 |
5 | 5.3091 | 5.4163 | 5.5256 | 5.6371 | 5.7507 | 5.8666 | 5.9847 | 6.1051 | 6.3528 |
6 | 6.4684 | 6.6330 | 6.8019 | 6.9753 | 7.1533 | 7.3359 | 7.5233 | 7.7156 | 8.1152 |
7 | 7.6625 | 7.8983 | 8.1420 | 8.3938 | 8.6540 | 8.9228 | 9.2004 | 9.4872 | 10.0890 |
8 | 8.8923 | 9.2142 | 9.5491 | 9.8975 | 10.2598 | 10.6366 | 11.0285 | 11.4359 | 12.2997 |
9 | 10.1591 | 10.5828 | 11.0266 | 11.4913 | 11.9780 | 12.4876 | 13.0210 | 13.5795 | 14.7757 |
10 | 11.4639 | 12.0061 | 12.5779 | 13.1808 | 13.8164 | 14.4866 | 15.1929 | 15.9374 | 17.5487 |
The present value of $2,000 to be received nine years from today at 8% interest compounded annually is $1,000.40. (PV of $1, FV of $1, PVA of $1, and FVA of $1) (Use appropriate factor(s) from the tables provided.)
Answer: TRUE
Explanation: Present Value = Future Value × Interest Factor for 9 years @8%
Present Value = $2,000 × 0.5002 = $1,000.40
Difficulty: 2 Medium
Topic: Present Value of a Single Amount
Learning Objective: B-P1 Apply present value concepts to a single amount by using interest tables.
Bloom's: Apply
AACSB: Analytical Thinking
AICPA: BB Industry; FN Measurement
10) Present Value of 1
Periods | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10% | 12% |
3 | 0.9151 | 0.8890 | 0.8638 | 0.8396 | 0.8163 | 0.7938 | 0.7722 | 0.7513 | 0.7118 |
4 | 0.8885 | 0.8548 | 0.8227 | 0.7921 | 0.7629 | 0.7350 | 0.7084 | 0.6830 | 0.6355 |
5 | 0.8626 | 0.8219 | 0.7835 | 0.7473 | 0.7130 | 0.6806 | 0.6499 | 0.6209 | 0.5674 |
6 | 0.8375 | 0.7903 | 0.7462 | 0.7050 | 0.6663 | 0.6302 | 0.5963 | 0.5645 | 0.5066 |
7 | 0.8131 | 0.7599 | 0.7107 | 0.6651 | 0.6227 | 0.5835 | 0.5470 | 0.5132 | 0.4523 |
8 | 0.7894 | 0.7307 | 0.6768 | 0.6274 | 0.5820 | 0.5403 | 0.5019 | 0.4665 | 0.4039 |
9 | 0.7664 | 0.7026 | 0.6446 | 0.5919 | 0.5439 | 0.5002 | 0.4604 | 0.4241 | 0.3606 |
10 | 0.7441 | 0.6756 | 0.6139 | 0.5584 | 0.5083 | 0.4632 | 0.4224 | 0.3855 | 0.3220 |
Future Value of 1
Periods | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10% | 12% |
3 | 1.0927 | 1.1249 | 1.1576 | 1.1910 | 1.2250 | 1.2597 | 1.2950 | 1.3310 | 1.4049 |
4 | 1.1255 | 1.1699 | 1.2155 | 1.2625 | 1.3108 | 1.3605 | 1.4116 | 1.4641 | 1.5735 |
5 | 1.1593 | 1.2167 | 1.2763 | 1.3382 | 1.4026 | 1.4693 | 1.5386 | 1.6105 | 1.7623 |
6 | 1.1941 | 1.2653 | 1.3401 | 1.4185 | 1.5007 | 1.5869 | 1.6771 | 1.7716 | 1.9738 |
7 | 1.2299 | 1.3159 | 1.4071 | 1.5036 | 1.6058 | 1.7138 | 1.8280 | 1.9487 | 2.2107 |
8 | 1.2668 | 1.3686 | 1.4775 | 1.5938 | 1.7182 | 1.8509 | 1.9926 | 2.1436 | 2.4760 |
9 | 1.3048 | 1.4233 | 1.5513 | 1.6895 | 1.8385 | 1.9990 | 2.1719 | 2.3579 | 2.7731 |
10 | 1.3439 | 1.4802 | 1.6289 | 1.7908 | 1.9672 | 2.1589 | 2.3674 | 2.5937 | 3.1058 |
Present Value of an Annuity of 1
Periods | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10% | 12% |
3 | 2.8286 | 2.7751 | 2.7232 | 2.6730 | 2.6243 | 2.5771 | 2.5313 | 2.4869 | 2.4018 |
4 | 3.7171 | 3.6299 | 3.5460 | 3.4651 | 3.3872 | 3.3121 | 3.2397 | 3.1699 | 3.0373 |
5 | 4.5797 | 4.4518 | 4.3295 | 4.2124 | 4.1002 | 3.9927 | 3.8897 | 3.7908 | 3.6048 |
6 | 5.4172 | 5.2421 | 5.0757 | 4.9173 | 4.7665 | 4.6229 | 4.4859 | 4.3553 | 4.1114 |
7 | 6.2303 | 6.0021 | 5.7864 | 5.5824 | 5.3893 | 5.2064 | 5.0330 | 4.8684 | 4.5638 |
8 | 7.0197 | 6.7327 | 6.4632 | 6.2098 | 5.9713 | 5.7466 | 5.5348 | 5.3349 | 4.9676 |
9 | 7.7861 | 7.4353 | 7.1078 | 6.8017 | 6.5152 | 6.2469 | 5.9952 | 5.7950 | 5.3282 |
10 | 8.5302 | 8.1109 | 7.7217 | 7.3601 | 7.0236 | 6.7101 | 6.4177 | 6.1446 | 5.6502 |
Future Value of an Annuity of 1
Periods | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10% | 12% |
3 | 3.0909 | 3.1216 | 3.1525 | 3.1836 | 3.2149 | 3.2464 | 3.2781 | 3.3100 | 3.3744 |
4 | 4.1836 | 4.2465 | 4.3101 | 4.3746 | 4.4399 | 4.5061 | 4.5731 | 4.6410 | 4.7793 |
5 | 5.3091 | 5.4163 | 5.5256 | 5.6371 | 5.7507 | 5.8666 | 5.9847 | 6.1051 | 6.3528 |
6 | 6.4684 | 6.6330 | 6.8019 | 6.9753 | 7.1533 | 7.3359 | 7.5233 | 7.7156 | 8.1152 |
7 | 7.6625 | 7.8983 | 8.1420 | 8.3938 | 8.6540 | 8.9228 | 9.2004 | 9.4872 | 10.0890 |
8 | 8.8923 | 9.2142 | 9.5491 | 9.8975 | 10.2598 | 10.6366 | 11.0285 | 11.4359 | 12.2997 |
9 | 10.1591 | 10.5828 | 11.0266 | 11.4913 | 11.9780 | 12.4876 | 13.0210 | 13.5795 | 14.7757 |
10 | 11.4639 | 12.0061 | 12.5779 | 13.1808 | 13.8164 | 14.4866 | 15.1929 | 15.9374 | 17.5487 |
Sandra has a savings account that has accumulated to $50,000. She started with $28,225, and earned interest at 10% compounded annually. It took her five years to accumulate the $50,000. (PV of $1, FV of $1, PVA of $1, and FVA of $1) (Use appropriate factor(s) from the tables provided.)
Answer: FALSE
Explanation: PV Factor = Present Value/Future Value PV Factor = $28,225/$50,000 = 0.5645 0.5645 is the present value of 1 factor, 10%, 6 periods
Difficulty: 3 Hard
Topic: Present Value of a Single Amount
Learning Objective: B-P1 Apply present value concepts to a single amount by using interest tables.
Bloom's: Apply
AACSB: Analytical Thinking
AICPA: BB Industry; FN Measurement; BB Critical Thinking
11) Future value can be found if the interest rate (i), the number of periods (n), and the present value (p) are known.
Answer: TRUE
Difficulty: 1 Easy
Topic: Future Value of Single Amount
Learning Objective: B-P2 Apply future value concepts to a single amount by using interest tables.
Bloom's: Remember
AACSB: Communication
AICPA: BB Industry; FN Measurement
12) The number of periods in a future value calculation may only be expressed in years.
Answer: FALSE
Difficulty: 1 Easy
Topic: Future Value of Single Amount
Learning Objective: B-P2 Apply future value concepts to a single amount by using interest tables.
Bloom's: Remember
AACSB: Communication
AICPA: BB Industry; FN Measurement
Future Value of an Annuity of 1
Periods | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10% | 12% |
3 | 3.0909 | 3.1216 | 3.1525 | 3.1836 | 3.2149 | 3.2464 | 3.2781 | 3.3100 | 3.3744 |
4 | 4.1836 | 4.2465 | 4.3101 | 4.3746 | 4.4399 | 4.5061 | 4.5731 | 4.6410 | 4.7793 |
5 | 5.3091 | 5.4163 | 5.5256 | 5.6371 | 5.7507 | 5.8666 | 5.9847 | 6.1051 | 6.3528 |
6 | 6.4684 | 6.6330 | 6.8019 | 6.9753 | 7.1533 | 7.3359 | 7.5233 | 7.7156 | 8.1152 |
7 | 7.6625 | 7.8983 | 8.1420 | 8.3938 | 8.6540 | 8.9228 | 9.2004 | 9.4872 | 10.0890 |
8 | 8.8923 | 9.2142 | 9.5491 | 9.8975 | 10.2598 | 10.6366 | 11.0285 | 11.4359 | 12.2997 |
9 | 10.1591 | 10.5828 | 11.0266 | 11.4913 | 11.9780 | 12.4876 | 13.0210 | 13.5795 | 14.7757 |
10 | 11.4639 | 12.0061 | 12.5779 | 13.1808 | 13.8164 | 14.4866 | 15.1929 | 15.9374 | 17.5487 |
The future value of $100 compounded semiannually for 3 years at 12% equals $140.49. (PV of $1, FV of $1, PVA of $1, and FVA of $1) (Use appropriate factor(s) from the tables provided.)
Answer: FALSE
Explanation: Future Value = Present Value × Interest Factor
Future Value = $100 × 1.4185 = $141.85
Difficulty: 2 Medium
Topic: Future Value of Single Amount
Learning Objective: B-P2 Apply future value concepts to a single amount by using interest tables.
Bloom's: Apply
AACSB: Analytical Thinking
AICPA: BB Industry; FN Measurement
14) Present Value of 1
Periods | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10% | 12% |
3 | 0.9151 | 0.8890 | 0.8638 | 0.8396 | 0.8163 | 0.7938 | 0.7722 | 0.7513 | 0.7118 |
4 | 0.8885 | 0.8548 | 0.8227 | 0.7921 | 0.7629 | 0.7350 | 0.7084 | 0.6830 | 0.6355 |
5 | 0.8626 | 0.8219 | 0.7835 | 0.7473 | 0.7130 | 0.6806 | 0.6499 | 0.6209 | 0.5674 |
6 | 0.8375 | 0.7903 | 0.7462 | 0.7050 | 0.6663 | 0.6302 | 0.5963 | 0.5645 | 0.5066 |
7 | 0.8131 | 0.7599 | 0.7107 | 0.6651 | 0.6227 | 0.5835 | 0.5470 | 0.5132 | 0.4523 |
8 | 0.7894 | 0.7307 | 0.6768 | 0.6274 | 0.5820 | 0.5403 | 0.5019 | 0.4665 | 0.4039 |
9 | 0.7664 | 0.7026 | 0.6446 | 0.5919 | 0.5439 | 0.5002 | 0.4604 | 0.4241 | 0.3606 |
10 | 0.7441 | 0.6756 | 0.6139 | 0.5584 | 0.5083 | 0.4632 | 0.4224 | 0.3855 | 0.3220 |
Future Value of 1
Periods | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10% | 12% |
3 | 1.0927 | 1.1249 | 1.1576 | 1.1910 | 1.2250 | 1.2597 | 1.2950 | 1.3310 | 1.4049 |
4 | 1.1255 | 1.1699 | 1.2155 | 1.2625 | 1.3108 | 1.3605 | 1.4116 | 1.4641 | 1.5735 |
5 | 1.1593 | 1.2167 | 1.2763 | 1.3382 | 1.4026 | 1.4693 | 1.5386 | 1.6105 | 1.7623 |
6 | 1.1941 | 1.2653 | 1.3401 | 1.4185 | 1.5007 | 1.5869 | 1.6771 | 1.7716 | 1.9738 |
7 | 1.2299 | 1.3159 | 1.4071 | 1.5036 | 1.6058 | 1.7138 | 1.8280 | 1.9487 | 2.2107 |
8 | 1.2668 | 1.3686 | 1.4775 | 1.5938 | 1.7182 | 1.8509 | 1.9926 | 2.1436 | 2.4760 |
9 | 1.3048 | 1.4233 | 1.5513 | 1.6895 | 1.8385 | 1.9990 | 2.1719 | 2.3579 | 2.7731 |
10 | 1.3439 | 1.4802 | 1.6289 | 1.7908 | 1.9672 | 2.1589 | 2.3674 | 2.5937 | 3.1058 |
Present Value of an Annuity of 1
Periods | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10% | 12% |
3 | 2.8286 | 2.7751 | 2.7232 | 2.6730 | 2.6243 | 2.5771 | 2.5313 | 2.4869 | 2.4018 |
4 | 3.7171 | 3.6299 | 3.5460 | 3.4651 | 3.3872 | 3.3121 | 3.2397 | 3.1699 | 3.0373 |
5 | 4.5797 | 4.4518 | 4.3295 | 4.2124 | 4.1002 | 3.9927 | 3.8897 | 3.7908 | 3.6048 |
6 | 5.4172 | 5.2421 | 5.0757 | 4.9173 | 4.7665 | 4.6229 | 4.4859 | 4.3553 | 4.1114 |
7 | 6.2303 | 6.0021 | 5.7864 | 5.5824 | 5.3893 | 5.2064 | 5.0330 | 4.8684 | 4.5638 |
8 | 7.0197 | 6.7327 | 6.4632 | 6.2098 | 5.9713 | 5.7466 | 5.5348 | 5.3349 | 4.9676 |
9 | 7.7861 | 7.4353 | 7.1078 | 6.8017 | 6.5152 | 6.2469 | 5.9952 | 5.7950 | 5.3282 |
10 | 8.5302 | 8.1109 | 7.7217 | 7.3601 | 7.0236 | 6.7101 | 6.4177 | 6.1446 | 5.6502 |
Future Value of an Annuity of 1
Periods | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10% | 12% |
3 | 3.0909 | 3.1216 | 3.1525 | 3.1836 | 3.2149 | 3.2464 | 3.2781 | 3.3100 | 3.3744 |
4 | 4.1836 | 4.2465 | 4.3101 | 4.3746 | 4.4399 | 4.5061 | 4.5731 | 4.6410 | 4.7793 |
5 | 5.3091 | 5.4163 | 5.5256 | 5.6371 | 5.7507 | 5.8666 | 5.9847 | 6.1051 | 6.3528 |
6 | 6.4684 | 6.6330 | 6.8019 | 6.9753 | 7.1533 | 7.3359 | 7.5233 | 7.7156 | 8.1152 |
7 | 7.6625 | 7.8983 | 8.1420 | 8.3938 | 8.6540 | 8.9228 | 9.2004 | 9.4872 | 10.0890 |
8 | 8.8923 | 9.2142 | 9.5491 | 9.8975 | 10.2598 | 10.6366 | 11.0285 | 11.4359 | 12.2997 |
9 | 10.1591 | 10.5828 | 11.0266 | 11.4913 | 11.9780 | 12.4876 | 13.0210 | 13.5795 | 14.7757 |
10 | 11.4639 | 12.0061 | 12.5779 | 13.1808 | 13.8164 | 14.4866 | 15.1929 | 15.9374 | 17.5487 |
At an annual interest rate of 8% compounded annually, $5,300 will accumulate to a total of $7,210.65 in 5 years. (PV of $1, FV of $1, PVA of $1, and FVA of $1) (Use appropriate factor(s) from the tables provided.)
Answer: FALSE
Explanation: FV Factor = Future Value/Present Value FV Factor = $7,210.65/$5,300 = 1.3605 1.3605 is the future value of $1 factor, 8%, 4 periods
Difficulty: 3 Hard
Topic: Future Value of Single Amount
Learning Objective: B-P2 Apply future value concepts to a single amount by using interest tables.
Bloom's: Apply
AACSB: Analytical Thinking
AICPA: BB Industry; FN Measurement
15) An annuity is a series of equal payments occurring at equal intervals.
Answer: TRUE
Difficulty: 1 Easy
Topic: Present Value of an Annuity
Learning Objective: B-P3 Apply present value concepts to an annuity by using interest tables.
Bloom's: Remember
AACSB: Communication
AICPA: BB Industry; FN Decision Making
16) The present value of an annuity table can be used to determine the value today of a series of payments to be received in the future.
Answer: TRUE
Difficulty: 1 Easy
Topic: Present Value of an Annuity
Learning Objective: B-P3 Apply present value concepts to an annuity by using interest tables.
Bloom's: Remember
AACSB: Communication
AICPA: BB Industry; FN Decision Making
17) A series of equal payments made or received at the end of each period is an ordinary annuity.
Answer: TRUE
Difficulty: 1 Easy
Topic: Present Value of an Annuity
Learning Objective: B-P3 Apply present value concepts to an annuity by using interest tables.
Bloom's: Remember
AACSB: Communication
AICPA: BB Industry; FN Decision Making
18) Present Value of 1
Periods | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10% | 12% |
3 | 0.9151 | 0.8890 | 0.8638 | 0.8396 | 0.8163 | 0.7938 | 0.7722 | 0.7513 | 0.7118 |
4 | 0.8885 | 0.8548 | 0.8227 | 0.7921 | 0.7629 | 0.7350 | 0.7084 | 0.6830 | 0.6355 |
5 | 0.8626 | 0.8219 | 0.7835 | 0.7473 | 0.7130 | 0.6806 | 0.6499 | 0.6209 | 0.5674 |
6 | 0.8375 | 0.7903 | 0.7462 | 0.7050 | 0.6663 | 0.6302 | 0.5963 | 0.5645 | 0.5066 |
7 | 0.8131 | 0.7599 | 0.7107 | 0.6651 | 0.6227 | 0.5835 | 0.5470 | 0.5132 | 0.4523 |
8 | 0.7894 | 0.7307 | 0.6768 | 0.6274 | 0.5820 | 0.5403 | 0.5019 | 0.4665 | 0.4039 |
9 | 0.7664 | 0.7026 | 0.6446 | 0.5919 | 0.5439 | 0.5002 | 0.4604 | 0.4241 | 0.3606 |
10 | 0.7441 | 0.6756 | 0.6139 | 0.5584 | 0.5083 | 0.4632 | 0.4224 | 0.3855 | 0.3220 |
Future Value of 1
Periods | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10% | 12% |
3 | 1.0927 | 1.1249 | 1.1576 | 1.1910 | 1.2250 | 1.2597 | 1.2950 | 1.3310 | 1.4049 |
4 | 1.1255 | 1.1699 | 1.2155 | 1.2625 | 1.3108 | 1.3605 | 1.4116 | 1.4641 | 1.5735 |
5 | 1.1593 | 1.2167 | 1.2763 | 1.3382 | 1.4026 | 1.4693 | 1.5386 | 1.6105 | 1.7623 |
6 | 1.1941 | 1.2653 | 1.3401 | 1.4185 | 1.5007 | 1.5869 | 1.6771 | 1.7716 | 1.9738 |
7 | 1.2299 | 1.3159 | 1.4071 | 1.5036 | 1.6058 | 1.7138 | 1.8280 | 1.9487 | 2.2107 |
8 | 1.2668 | 1.3686 | 1.4775 | 1.5938 | 1.7182 | 1.8509 | 1.9926 | 2.1436 | 2.4760 |
9 | 1.3048 | 1.4233 | 1.5513 | 1.6895 | 1.8385 | 1.9990 | 2.1719 | 2.3579 | 2.7731 |
10 | 1.3439 | 1.4802 | 1.6289 | 1.7908 | 1.9672 | 2.1589 | 2.3674 | 2.5937 | 3.1058 |
Present Value of an Annuity of 1
Periods | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10% | 12% |
3 | 2.8286 | 2.7751 | 2.7232 | 2.6730 | 2.6243 | 2.5771 | 2.5313 | 2.4869 | 2.4018 |
4 | 3.7171 | 3.6299 | 3.5460 | 3.4651 | 3.3872 | 3.3121 | 3.2397 | 3.1699 | 3.0373 |
5 | 4.5797 | 4.4518 | 4.3295 | 4.2124 | 4.1002 | 3.9927 | 3.8897 | 3.7908 | 3.6048 |
6 | 5.4172 | 5.2421 | 5.0757 | 4.9173 | 4.7665 | 4.6229 | 4.4859 | 4.3553 | 4.1114 |
7 | 6.2303 | 6.0021 | 5.7864 | 5.5824 | 5.3893 | 5.2064 | 5.0330 | 4.8684 | 4.5638 |
8 | 7.0197 | 6.7327 | 6.4632 | 6.2098 | 5.9713 | 5.7466 | 5.5348 | 5.3349 | 4.9676 |
9 | 7.7861 | 7.4353 | 7.1078 | 6.8017 | 6.5152 | 6.2469 | 5.9952 | 5.7950 | 5.3282 |
10 | 8.5302 | 8.1109 | 7.7217 | 7.3601 | 7.0236 | 6.7101 | 6.4177 | 6.1446 | 5.6502 |
Future Value of an Annuity of 1
Periods | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10% | 12% |
3 | 3.0909 | 3.1216 | 3.1525 | 3.1836 | 3.2149 | 3.2464 | 3.2781 | 3.3100 | 3.3744 |
4 | 4.1836 | 4.2465 | 4.3101 | 4.3746 | 4.4399 | 4.5061 | 4.5731 | 4.6410 | 4.7793 |
5 | 5.3091 | 5.4163 | 5.5256 | 5.6371 | 5.7507 | 5.8666 | 5.9847 | 6.1051 | 6.3528 |
6 | 6.4684 | 6.6330 | 6.8019 | 6.9753 | 7.1533 | 7.3359 | 7.5233 | 7.7156 | 8.1152 |
7 | 7.6625 | 7.8983 | 8.1420 | 8.3938 | 8.6540 | 8.9228 | 9.2004 | 9.4872 | 10.0890 |
8 | 8.8923 | 9.2142 | 9.5491 | 9.8975 | 10.2598 | 10.6366 | 11.0285 | 11.4359 | 12.2997 |
9 | 10.1591 | 10.5828 | 11.0266 | 11.4913 | 11.9780 | 12.4876 | 13.0210 | 13.5795 | 14.7757 |
10 | 11.4639 | 12.0061 | 12.5779 | 13.1808 | 13.8164 | 14.4866 | 15.1929 | 15.9374 | 17.5487 |
The present value of $5,000 per year for three years at 12% compounded annually is $12,009. (PV of $1, FV of $1, PVA of $1, and FVA of $1) (Use appropriate factor(s) from the tables provided.)
Answer: TRUE
Explanation: 2.4018 is the PV factor on the Present Value of an Annuity table; n = 3; i = 12%
Present Value of an Annuity = Annuity × PV Factor
Present Value of an Annuity = $5,000 × 2.4018 = $12,009
Difficulty: 3 Hard
Topic: Present Value of an Annuity
Learning Objective: B-P3 Apply present value concepts to an annuity by using interest tables.
Bloom's: Apply
AACSB: Analytical Thinking
AICPA: BB Industry; FN Decision Making
19) Present Value of 1
Periods | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10% | 12% |
3 | 0.9151 | 0.8890 | 0.8638 | 0.8396 | 0.8163 | 0.7938 | 0.7722 | 0.7513 | 0.7118 |
4 | 0.8885 | 0.8548 | 0.8227 | 0.7921 | 0.7629 | 0.7350 | 0.7084 | 0.6830 | 0.6355 |
5 | 0.8626 | 0.8219 | 0.7835 | 0.7473 | 0.7130 | 0.6806 | 0.6499 | 0.6209 | 0.5674 |
6 | 0.8375 | 0.7903 | 0.7462 | 0.7050 | 0.6663 | 0.6302 | 0.5963 | 0.5645 | 0.5066 |
7 | 0.8131 | 0.7599 | 0.7107 | 0.6651 | 0.6227 | 0.5835 | 0.5470 | 0.5132 | 0.4523 |
8 | 0.7894 | 0.7307 | 0.6768 | 0.6274 | 0.5820 | 0.5403 | 0.5019 | 0.4665 | 0.4039 |
9 | 0.7664 | 0.7026 | 0.6446 | 0.5919 | 0.5439 | 0.5002 | 0.4604 | 0.4241 | 0.3606 |
10 | 0.7441 | 0.6756 | 0.6139 | 0.5584 | 0.5083 | 0.4632 | 0.4224 | 0.3855 | 0.3220 |
Future Value of 1
Periods | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10% | 12% |
3 | 1.0927 | 1.1249 | 1.1576 | 1.1910 | 1.2250 | 1.2597 | 1.2950 | 1.3310 | 1.4049 |
4 | 1.1255 | 1.1699 | 1.2155 | 1.2625 | 1.3108 | 1.3605 | 1.4116 | 1.4641 | 1.5735 |
5 | 1.1593 | 1.2167 | 1.2763 | 1.3382 | 1.4026 | 1.4693 | 1.5386 | 1.6105 | 1.7623 |
6 | 1.1941 | 1.2653 | 1.3401 | 1.4185 | 1.5007 | 1.5869 | 1.6771 | 1.7716 | 1.9738 |
7 | 1.2299 | 1.3159 | 1.4071 | 1.5036 | 1.6058 | 1.7138 | 1.8280 | 1.9487 | 2.2107 |
8 | 1.2668 | 1.3686 | 1.4775 | 1.5938 | 1.7182 | 1.8509 | 1.9926 | 2.1436 | 2.4760 |
9 | 1.3048 | 1.4233 | 1.5513 | 1.6895 | 1.8385 | 1.9990 | 2.1719 | 2.3579 | 2.7731 |
10 | 1.3439 | 1.4802 | 1.6289 | 1.7908 | 1.9672 | 2.1589 | 2.3674 | 2.5937 | 3.1058 |
Present Value of an Annuity of 1
Periods | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10% | 12% |
3 | 2.8286 | 2.7751 | 2.7232 | 2.6730 | 2.6243 | 2.5771 | 2.5313 | 2.4869 | 2.4018 |
4 | 3.7171 | 3.6299 | 3.5460 | 3.4651 | 3.3872 | 3.3121 | 3.2397 | 3.1699 | 3.0373 |
5 | 4.5797 | 4.4518 | 4.3295 | 4.2124 | 4.1002 | 3.9927 | 3.8897 | 3.7908 | 3.6048 |
6 | 5.4172 | 5.2421 | 5.0757 | 4.9173 | 4.7665 | 4.6229 | 4.4859 | 4.3553 | 4.1114 |
7 | 6.2303 | 6.0021 | 5.7864 | 5.5824 | 5.3893 | 5.2064 | 5.0330 | 4.8684 | 4.5638 |
8 | 7.0197 | 6.7327 | 6.4632 | 6.2098 | 5.9713 | 5.7466 | 5.5348 | 5.3349 | 4.9676 |
9 | 7.7861 | 7.4353 | 7.1078 | 6.8017 | 6.5152 | 6.2469 | 5.9952 | 5.7950 | 5.3282 |
10 | 8.5302 | 8.1109 | 7.7217 | 7.3601 | 7.0236 | 6.7101 | 6.4177 | 6.1446 | 5.6502 |
Future Value of an Annuity of 1
Present Value of an Annuity = Annuity × PV Factor
Present Value of an Annuity = $10,000 × 3.4651 = $34,651.
Difficulty: 3 Hard
Topic: Present Value of an Annuity
Learning Objective: B-P3 Apply present value concepts to an annuity by using interest tables.
Bloom's: Apply
AACSB: Analytical Thinking
AICPA: BB Industry; FN Decision Making
20) Present Value of 1
Periods | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10% | 12% |
3 | 0.9151 | 0.8890 | 0.8638 | 0.8396 | 0.8163 | 0.7938 | 0.7722 | 0.7513 | 0.7118 |
4 | 0.8885 | 0.8548 | 0.8227 | 0.7921 | 0.7629 | 0.7350 | 0.7084 | 0.6830 | 0.6355 |
5 | 0.8626 | 0.8219 | 0.7835 | 0.7473 | 0.7130 | 0.6806 | 0.6499 | 0.6209 | 0.5674 |
6 | 0.8375 | 0.7903 | 0.7462 | 0.7050 | 0.6663 | 0.6302 | 0.5963 | 0.5645 | 0.5066 |
7 | 0.8131 | 0.7599 | 0.7107 | 0.6651 | 0.6227 | 0.5835 | 0.5470 | 0.5132 | 0.4523 |
8 | 0.7894 | 0.7307 | 0.6768 | 0.6274 | 0.5820 | 0.5403 | 0.5019 | 0.4665 | 0.4039 |
9 | 0.7664 | 0.7026 | 0.6446 | 0.5919 | 0.5439 | 0.5002 | 0.4604 | 0.4241 | 0.3606 |
10 | 0.7441 | 0.6756 | 0.6139 | 0.5584 | 0.5083 | 0.4632 | 0.4224 | 0.3855 | 0.3220 |
Future Value of 1
Periods | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10% | 12% |
3 | 1.0927 | 1.1249 | 1.1576 | 1.1910 | 1.2250 | 1.2597 | 1.2950 | 1.3310 | 1.4049 |
4 | 1.1255 | 1.1699 | 1.2155 | 1.2625 | 1.3108 | 1.3605 | 1.4116 | 1.4641 | 1.5735 |
5 | 1.1593 | 1.2167 | 1.2763 | 1.3382 | 1.4026 | 1.4693 | 1.5386 | 1.6105 | 1.7623 |
6 | 1.1941 | 1.2653 | 1.3401 | 1.4185 | 1.5007 | 1.5869 | 1.6771 | 1.7716 | 1.9738 |
7 | 1.2299 | 1.3159 | 1.4071 | 1.5036 | 1.6058 | 1.7138 | 1.8280 | 1.9487 | 2.2107 |
8 | 1.2668 | 1.3686 | 1.4775 | 1.5938 | 1.7182 | 1.8509 | 1.9926 | 2.1436 | 2.4760 |
9 | 1.3048 | 1.4233 | 1.5513 | 1.6895 | 1.8385 | 1.9990 | 2.1719 | 2.3579 | 2.7731 |
10 | 1.3439 | 1.4802 | 1.6289 | 1.7908 | 1.9672 | 2.1589 | 2.3674 | 2.5937 | 3.1058 |
Present Value of an Annuity of 1
Periods | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10% | 12% |
3 | 2.8286 | 2.7751 | 2.7232 | 2.6730 | 2.6243 | 2.5771 | 2.5313 | 2.4869 | 2.4018 |
4 | 3.7171 | 3.6299 | 3.5460 | 3.4651 | 3.3872 | 3.3121 | 3.2397 | 3.1699 | 3.0373 |
5 | 4.5797 | 4.4518 | 4.3295 | 4.2124 | 4.1002 | 3.9927 | 3.8897 | 3.7908 | 3.6048 |
6 | 5.4172 | 5.2421 | 5.0757 | 4.9173 | 4.7665 | 4.6229 | 4.4859 | 4.3553 | 4.1114 |
7 | 6.2303 | 6.0021 | 5.7864 | 5.5824 | 5.3893 | 5.2064 | 5.0330 | 4.8684 | 4.5638 |
8 | 7.0197 | 6.7327 | 6.4632 | 6.2098 | 5.9713 | 5.7466 | 5.5348 | 5.3349 | 4.9676 |
9 | 7.7861 | 7.4353 | 7.1078 | 6.8017 | 6.5152 | 6.2469 | 5.9952 | 5.7950 | 5.3282 |
10 | 8.5302 | 8.1109 | 7.7217 | 7.3601 | 7.0236 | 6.7101 | 6.4177 | 6.1446 | 5.6502 |
Future Value of an Annuity of 1
Periods | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10% | 12% |
3 | 3.0909 | 3.1216 | 3.1525 | 3.1836 | 3.2149 | 3.2464 | 3.2781 | 3.3100 | 3.3744 |
4 | 4.1836 | 4.2465 | 4.3101 | 4.3746 | 4.4399 | 4.5061 | 4.5731 | 4.6410 | 4.7793 |
5 | 5.3091 | 5.4163 | 5.5256 | 5.6371 | 5.7507 | 5.8666 | 5.9847 | 6.1051 | 6.3528 |
6 | 6.4684 | 6.6330 | 6.8019 | 6.9753 | 7.1533 | 7.3359 | 7.5233 | 7.7156 | 8.1152 |
7 | 7.6625 | 7.8983 | 8.1420 | 8.3938 | 8.6540 | 8.9228 | 9.2004 | 9.4872 | 10.0890 |
8 | 8.8923 | 9.2142 | 9.5491 | 9.8975 | 10.2598 | 10.6366 | 11.0285 | 11.4359 | 12.2997 |
9 | 10.1591 | 10.5828 | 11.0266 | 11.4913 | 11.9780 | 12.4876 | 13.0210 | 13.5795 | 14.7757 |
10 | 11.4639 | 12.0061 | 12.5779 | 13.1808 | 13.8164 | 14.4866 | 15.1929 | 15.9374 | 17.5487 |
The present value of eight $5,000 semiannual payments invested for 4 years at 8% compounded semiannually is $33,663.50. (PV of $1, FV of $1, PVA of $1, and FVA of $1) (Use appropriate factor(s) from the tables provided.)
Answer: TRUE
Explanation: 6.7327 is the PV factor on the Present Value of an Annuity table; n = 8; i = 4%
Present Value of an Annuity = Annuity × PV Factor
Present Value of an Annuity = $5,000 × 6.7327 = $33,663.50.
Difficulty: 3 Hard
Topic: Present Value of an Annuity
Learning Objective: B-P3 Apply present value concepts to an annuity by using interest tables.
Bloom's: Apply
AACSB: Analytical Thinking
AICPA: BB Industry; FN Decision Making
21) Present Value of 1
Periods | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10% | 12% |
3 | 0.9151 | 0.8890 | 0.8638 | 0.8396 | 0.8163 | 0.7938 | 0.7722 | 0.7513 | 0.7118 |
4 | 0.8885 | 0.8548 | 0.8227 | 0.7921 | 0.7629 | 0.7350 | 0.7084 | 0.6830 | 0.6355 |
5 | 0.8626 | 0.8219 | 0.7835 | 0.7473 | 0.7130 | 0.6806 | 0.6499 | 0.6209 | 0.5674 |
6 | 0.8375 | 0.7903 | 0.7462 | 0.7050 | 0.6663 | 0.6302 | 0.5963 | 0.5645 | 0.5066 |
7 | 0.8131 | 0.7599 | 0.7107 | 0.6651 | 0.6227 | 0.5835 | 0.5470 | 0.5132 | 0.4523 |
8 | 0.7894 | 0.7307 | 0.6768 | 0.6274 | 0.5820 | 0.5403 | 0.5019 | 0.4665 | 0.4039 |
9 | 0.7664 | 0.7026 | 0.6446 | 0.5919 | 0.5439 | 0.5002 | 0.4604 | 0.4241 | 0.3606 |
10 | 0.7441 | 0.6756 | 0.6139 | 0.5584 | 0.5083 | 0.4632 | 0.4224 | 0.3855 | 0.3220 |
Future Value of 1
Periods | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10% | 12% |
3 | 1.0927 | 1.1249 | 1.1576 | 1.1910 | 1.2250 | 1.2597 | 1.2950 | 1.3310 | 1.4049 |
4 | 1.1255 | 1.1699 | 1.2155 | 1.2625 | 1.3108 | 1.3605 | 1.4116 | 1.4641 | 1.5735 |
5 | 1.1593 | 1.2167 | 1.2763 | 1.3382 | 1.4026 | 1.4693 | 1.5386 | 1.6105 | 1.7623 |
6 | 1.1941 | 1.2653 | 1.3401 | 1.4185 | 1.5007 | 1.5869 | 1.6771 | 1.7716 | 1.9738 |
7 | 1.2299 | 1.3159 | 1.4071 | 1.5036 | 1.6058 | 1.7138 | 1.8280 | 1.9487 | 2.2107 |
8 | 1.2668 | 1.3686 | 1.4775 | 1.5938 | 1.7182 | 1.8509 | 1.9926 | 2.1436 | 2.4760 |
9 | 1.3048 | 1.4233 | 1.5513 | 1.6895 | 1.8385 | 1.9990 | 2.1719 | 2.3579 | 2.7731 |
10 | 1.3439 | 1.4802 | 1.6289 | 1.7908 | 1.9672 | 2.1589 | 2.3674 | 2.5937 | 3.1058 |
Present Value of an Annuity of 1
Periods | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10% | 12% |
3 | 2.8286 | 2.7751 | 2.7232 | 2.6730 | 2.6243 | 2.5771 | 2.5313 | 2.4869 | 2.4018 |
4 | 3.7171 | 3.6299 | 3.5460 | 3.4651 | 3.3872 | 3.3121 | 3.2397 | 3.1699 | 3.0373 |
5 | 4.5797 | 4.4518 | 4.3295 | 4.2124 | 4.1002 | 3.9927 | 3.8897 | 3.7908 | 3.6048 |
6 | 5.4172 | 5.2421 | 5.0757 | 4.9173 | 4.7665 | 4.6229 | 4.4859 | 4.3553 | 4.1114 |
7 | 6.2303 | 6.0021 | 5.7864 | 5.5824 | 5.3893 | 5.2064 | 5.0330 | 4.8684 | 4.5638 |
8 | 7.0197 | 6.7327 | 6.4632 | 6.2098 | 5.9713 | 5.7466 | 5.5348 | 5.3349 | 4.9676 |
9 | 7.7861 | 7.4353 | 7.1078 | 6.8017 | 6.5152 | 6.2469 | 5.9952 | 5.7950 | 5.3282 |
10 | 8.5302 | 8.1109 | 7.7217 | 7.3601 | 7.0236 | 6.7101 | 6.4177 | 6.1446 | 5.6502 |
Future Value of an Annuity of 1
Periods | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10% | 12% |
3 | 3.0909 | 3.1216 | 3.1525 | 3.1836 | 3.2149 | 3.2464 | 3.2781 | 3.3100 | 3.3744 |
4 | 4.1836 | 4.2465 | 4.3101 | 4.3746 | 4.4399 | 4.5061 | 4.5731 | 4.6410 | 4.7793 |
5 | 5.3091 | 5.4163 | 5.5256 | 5.6371 | 5.7507 | 5.8666 | 5.9847 | 6.1051 | 6.3528 |
6 | 6.4684 | 6.6330 | 6.8019 | 6.9753 | 7.1533 | 7.3359 | 7.5233 | 7.7156 | 8.1152 |
7 | 7.6625 | 7.8983 | 8.1420 | 8.3938 | 8.6540 | 8.9228 | 9.2004 | 9.4872 | 10.0890 |
8 | 8.8923 | 9.2142 | 9.5491 | 9.8975 | 10.2598 | 10.6366 | 11.0285 | 11.4359 | 12.2997 |
9 | 10.1591 | 10.5828 | 11.0266 | 11.4913 | 11.9780 | 12.4876 | 13.0210 | 13.5795 | 14.7757 |
10 | 11.4639 | 12.0061 | 12.5779 | 13.1808 | 13.8164 | 14.4866 | 15.1929 | 15.9374 | 17.5487 |
With deposits of $5,000 at the end of each year, you will have accumulated $38,578 at the end of the sixth year if the annual rate of interest is 10%. (PV of $1, FV of $1, PVA of $1, and FVA of $1) (Use appropriate factor(s) from the tables provided.)
Answer: TRUE
Explanation: 7.7156 is the FV factor on the Future Value of an Annuity table; n = 6; i = 10%
Future Value of an Annuity = Annuity × FV Factor
Future Value of an Annuity = $5,000 × 7.7156 = $38,578
Difficulty: 3 Hard
Topic: Future Value of an Annuity
Learning Objective: B-P4 Apply future value concepts to an annuity by using interest tables.
Bloom's: Apply
AACSB: Analytical Thinking
AICPA: BB Industry; FN Decision Making
22) The future value of an ordinary annuity is the accumulated value of each annuity payment excluding interest as of the date of the final payment.
Answer: FALSE
Difficulty: 2 Medium
Topic: Future Value of an Annuity
Learning Objective: B-P4 Apply future value concepts to an annuity by using interest tables.
Bloom's: Understand
AACSB: Communication
AICPA: BB Industry; FN Decision Making
23) Interest may be defined as:
A) Time.
B) A borrower's payment to the owner of an asset for its use.
C) The future value of a present amount.
D) Always a liability.
E) Always an asset.
Answer: B
Difficulty: 1 Easy
Topic: Present and Future Value Concepts
Learning Objective: B-C1 Describe the earning of interest and the concepts of present and future values.
Bloom's: Remember
AACSB: Communication
AICPA: BB Industry; FN Decision Making
24) If we want to know the value of present-day assets at a future date, we can use:
A) Present value computations.
B) Annuity computations.
C) Interest computations.
D) Future value computations.
E) Earnings computations.
Answer: D
Difficulty: 2 Medium
Topic: Present and Future Value Concepts
Learning Objective: B-C1 Describe the earning of interest and the concepts of present and future values.
Bloom's: Understand
AACSB: Communication
AICPA: BB Industry; FN Decision Making
25) Which interest rate column would you use from a present value or future value table for 8% interest compounded quarterly?
A) 12%
B) 6%
C) 3%
D) 2%
E) 1%
Answer: D
Explanation: An 8% annual interest rate is divided by 4 to find the quarterly rate.
Difficulty: 2 Medium
Topic: Present Value of a Single Amount; Future Value of Single Amount
Learning Objective: B-P1 Apply present value concepts to a single amount by using interest tables.; B-P2 Apply future value concepts to a single amount by using interest tables.
Bloom's: Understand
AACSB: Communication
AICPA: BB Industry; FN Decision Making
26) Which column (i) and row (n) would you use from a present value or future value table for 8% interest compounded quarterly for 6 years?
A) (i) = 2%, (n) = 8
B) (i) = 8%, (n) = 6
C) (i) = 2%, (n) = 24
D) (i) = 4%, (n) = 12
E) (i) = 4%, (n) = 24
Answer: C
Explanation: (i) = 8% annual interest rate divided by 4 = 2% quarterly rate.
(n) = 6 years x 4 quarters per year = 24 quarterly periods.
Difficulty: 2 Medium
Topic: Present Value of a Single Amount; Future Value of Single Amount
Learning Objective: B-P1 Apply present value concepts to a single amount by using interest tables.; B-P2 Apply future value concepts to a single amount by using interest tables.
Bloom's: Understand
AACSB: Communication
AICPA: BB Industry; FN Decision Making
27) Present Value of 1
Periods | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10% | 12% |
3 | 0.9151 | 0.8890 | 0.8638 | 0.8396 | 0.8163 | 0.7938 | 0.7722 | 0.7513 | 0.7118 |
4 | 0.8885 | 0.8548 | 0.8227 | 0.7921 | 0.7629 | 0.7350 | 0.7084 | 0.6830 | 0.6355 |
5 | 0.8626 | 0.8219 | 0.7835 | 0.7473 | 0.7130 | 0.6806 | 0.6499 | 0.6209 | 0.5674 |
6 | 0.8375 | 0.7903 | 0.7462 | 0.7050 | 0.6663 | 0.6302 | 0.5963 | 0.5645 | 0.5066 |
7 | 0.8131 | 0.7599 | 0.7107 | 0.6651 | 0.6227 | 0.5835 | 0.5470 | 0.5132 | 0.4523 |
8 | 0.7894 | 0.7307 | 0.6768 | 0.6274 | 0.5820 | 0.5403 | 0.5019 | 0.4665 | 0.4039 |
9 | 0.7664 | 0.7026 | 0.6446 | 0.5919 | 0.5439 | 0.5002 | 0.4604 | 0.4241 | 0.3606 |
10 | 0.7441 | 0.6756 | 0.6139 | 0.5584 | 0.5083 | 0.4632 | 0.4224 | 0.3855 | 0.3220 |
Future Value of 1
Periods | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10% | 12% |
3 | 1.0927 | 1.1249 | 1.1576 | 1.1910 | 1.2250 | 1.2597 | 1.2950 | 1.3310 | 1.4049 |
4 | 1.1255 | 1.1699 | 1.2155 | 1.2625 | 1.3108 | 1.3605 | 1.4116 | 1.4641 | 1.5735 |
5 | 1.1593 | 1.2167 | 1.2763 | 1.3382 | 1.4026 | 1.4693 | 1.5386 | 1.6105 | 1.7623 |
6 | 1.1941 | 1.2653 | 1.3401 | 1.4185 | 1.5007 | 1.5869 | 1.6771 | 1.7716 | 1.9738 |
7 | 1.2299 | 1.3159 | 1.4071 | 1.5036 | 1.6058 | 1.7138 | 1.8280 | 1.9487 | 2.2107 |
8 | 1.2668 | 1.3686 | 1.4775 | 1.5938 | 1.7182 | 1.8509 | 1.9926 | 2.1436 | 2.4760 |
9 | 1.3048 | 1.4233 | 1.5513 | 1.6895 | 1.8385 | 1.9990 | 2.1719 | 2.3579 | 2.7731 |
10 | 1.3439 | 1.4802 | 1.6289 | 1.7908 | 1.9672 | 2.1589 | 2.3674 | 2.5937 | 3.1058 |
Present Value of an Annuity of 1
Periods | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10% | 12% |
3 | 2.8286 | 2.7751 | 2.7232 | 2.6730 | 2.6243 | 2.5771 | 2.5313 | 2.4869 | 2.4018 |
4 | 3.7171 | 3.6299 | 3.5460 | 3.4651 | 3.3872 | 3.3121 | 3.2397 | 3.1699 | 3.0373 |
5 | 4.5797 | 4.4518 | 4.3295 | 4.2124 | 4.1002 | 3.9927 | 3.8897 | 3.7908 | 3.6048 |
6 | 5.4172 | 5.2421 | 5.0757 | 4.9173 | 4.7665 | 4.6229 | 4.4859 | 4.3553 | 4.1114 |
7 | 6.2303 | 6.0021 | 5.7864 | 5.5824 | 5.3893 | 5.2064 | 5.0330 | 4.8684 | 4.5638 |
8 | 7.0197 | 6.7327 | 6.4632 | 6.2098 | 5.9713 | 5.7466 | 5.5348 | 5.3349 | 4.9676 |
9 | 7.7861 | 7.4353 | 7.1078 | 6.8017 | 6.5152 | 6.2469 | 5.9952 | 5.7950 | 5.3282 |
10 | 8.5302 | 8.1109 | 7.7217 | 7.3601 | 7.0236 | 6.7101 | 6.4177 | 6.1446 | 5.6502 |
A company is considering investing in a project that is expected to return $350,000 four years from now. How much is the company willing to pay for this investment if the company requires a 12% return? (PV of $1, FV of $1, PVA of $1, and FVA of $1) (Use appropriate factor(s) from the tables provided.)
A) $55,606
B) $137,681
C) $222,425
D) $265,764
E) $350,000
Answer: C
Explanation: The PV factor on the Present Value table when n = 4 and i = 12% is 0.6355
Present Value = Future Value × PV Factor
Present Value = $350,000 × 0.6355 = $222,425
Difficulty: 2 Medium
Topic: Present Value of a Single Amount
Learning Objective: B-P1 Apply present value concepts to a single amount by using interest tables.
Bloom's: Apply
AACSB: Analytical Thinking
AICPA: BB Industry; FN Decision Making
28) Present Value of 1
Periods | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10% | 12% |
3 | 0.9151 | 0.8890 | 0.8638 | 0.8396 | 0.8163 | 0.7938 | 0.7722 | 0.7513 | 0.7118 |
4 | 0.8885 | 0.8548 | 0.8227 | 0.7921 | 0.7629 | 0.7350 | 0.7084 | 0.6830 | 0.6355 |
5 | 0.8626 | 0.8219 | 0.7835 | 0.7473 | 0.7130 | 0.6806 | 0.6499 | 0.6209 | 0.5674 |
6 | 0.8375 | 0.7903 | 0.7462 | 0.7050 | 0.6663 | 0.6302 | 0.5963 | 0.5645 | 0.5066 |
7 | 0.8131 | 0.7599 | 0.7107 | 0.6651 | 0.6227 | 0.5835 | 0.5470 | 0.5132 | 0.4523 |
8 | 0.7894 | 0.7307 | 0.6768 | 0.6274 | 0.5820 | 0.5403 | 0.5019 | 0.4665 | 0.4039 |
9 | 0.7664 | 0.7026 | 0.6446 | 0.5919 | 0.5439 | 0.5002 | 0.4604 | 0.4241 | 0.3606 |
10 | 0.7441 | 0.6756 | 0.6139 | 0.5584 | 0.5083 | 0.4632 | 0.4224 | 0.3855 | 0.3220 |
Future Value of 1
Periods | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10% | 12% |
3 | 1.0927 | 1.1249 | 1.1576 | 1.1910 | 1.2250 | 1.2597 | 1.2950 | 1.3310 | 1.4049 |
4 | 1.1255 | 1.1699 | 1.2155 | 1.2625 | 1.3108 | 1.3605 | 1.4116 | 1.4641 | 1.5735 |
5 | 1.1593 | 1.2167 | 1.2763 | 1.3382 | 1.4026 | 1.4693 | 1.5386 | 1.6105 | 1.7623 |
6 | 1.1941 | 1.2653 | 1.3401 | 1.4185 | 1.5007 | 1.5869 | 1.6771 | 1.7716 | 1.9738 |
7 | 1.2299 | 1.3159 | 1.4071 | 1.5036 | 1.6058 | 1.7138 | 1.8280 | 1.9487 | 2.2107 |
8 | 1.2668 | 1.3686 | 1.4775 | 1.5938 | 1.7182 | 1.8509 | 1.9926 | 2.1436 | 2.4760 |
9 | 1.3048 | 1.4233 | 1.5513 | 1.6895 | 1.8385 | 1.9990 | 2.1719 | 2.3579 | 2.7731 |
10 | 1.3439 | 1.4802 | 1.6289 | 1.7908 | 1.9672 | 2.1589 | 2.3674 | 2.5937 | 3.1058 |
Present Value of an Annuity of 1
Periods | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10% | 12% |
3 | 2.8286 | 2.7751 | 2.7232 | 2.6730 | 2.6243 | 2.5771 | 2.5313 | 2.4869 | 2.4018 |
4 | 3.7171 | 3.6299 | 3.5460 | 3.4651 | 3.3872 | 3.3121 | 3.2397 | 3.1699 | 3.0373 |
5 | 4.5797 | 4.4518 | 4.3295 | 4.2124 | 4.1002 | 3.9927 | 3.8897 | 3.7908 | 3.6048 |
6 | 5.4172 | 5.2421 | 5.0757 | 4.9173 | 4.7665 | 4.6229 | 4.4859 | 4.3553 | 4.1114 |
7 | 6.2303 | 6.0021 | 5.7864 | 5.5824 | 5.3893 | 5.2064 | 5.0330 | 4.8684 | 4.5638 |
8 | 7.0197 | 6.7327 | 6.4632 | 6.2098 | 5.9713 | 5.7466 | 5.5348 | 5.3349 | 4.9676 |
9 | 7.7861 | 7.4353 | 7.1078 | 6.8017 | 6.5152 | 6.2469 | 5.9952 | 5.7950 | 5.3282 |
10 | 8.5302 | 8.1109 | 7.7217 | 7.3601 | 7.0236 | 6.7101 | 6.4177 | 6.1446 | 5.6502 |
Future Value of an Annuity of 1
Periods | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10% | 12% |
3 | 3.0909 | 3.1216 | 3.1525 | 3.1836 | 3.2149 | 3.2464 | 3.2781 | 3.3100 | 3.3744 |
4 | 4.1836 | 4.2465 | 4.3101 | 4.3746 | 4.4399 | 4.5061 | 4.5731 | 4.6410 | 4.7793 |
5 | 5.3091 | 5.4163 | 5.5256 | 5.6371 | 5.7507 | 5.8666 | 5.9847 | 6.1051 | 6.3528 |
6 | 6.4684 | 6.6330 | 6.8019 | 6.9753 | 7.1533 | 7.3359 | 7.5233 | 7.7156 | 8.1152 |
7 | 7.6625 | 7.8983 | 8.1420 | 8.3938 | 8.6540 | 8.9228 | 9.2004 | 9.4872 | 10.0890 |
8 | 8.8923 | 9.2142 | 9.5491 | 9.8975 | 10.2598 | 10.6366 | 11.0285 | 11.4359 | 12.2997 |
9 | 10.1591 | 10.5828 | 11.0266 | 11.4913 | 11.9780 | 12.4876 | 13.0210 | 13.5795 | 14.7757 |
10 | 11.4639 | 12.0061 | 12.5779 | 13.1808 | 13.8164 | 14.4866 | 15.1929 | 15.9374 | 17.5487 |
Hao made a single investment which, after 5 years invested at 12% compounded semiannually, has accumulated to $214,900. How much did Hao invest initially? (PV of $1, FV of $1, PVA of $1, and FVA of $1) (Use appropriate factor(s) from the tables provided.)
A) $214,896
B) $160,584
C) $211,476
D) $120,000
E) $ 21,486
Answer: D
Explanation: The PV factor on the Present Value table when n =10 and i = 6% is 0.5584
Present Value = Future Value × PV Factor
Present Value = $214,900 × 0.5584 = $120,000
Difficulty: 2 Medium
Topic: Present Value of a Single Amount
Learning Objective: B-P1 Apply present value concepts to a single amount by using interest tables.
Bloom's: Apply
AACSB: Analytical Thinking
AICPA: BB Industry; FN Decision Making
29) Present Value of 1
Periods | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10% | 12% |
3 | 0.9151 | 0.8890 | 0.8638 | 0.8396 | 0.8163 | 0.7938 | 0.7722 | 0.7513 | 0.7118 |
4 | 0.8885 | 0.8548 | 0.8227 | 0.7921 | 0.7629 | 0.7350 | 0.7084 | 0.6830 | 0.6355 |
5 | 0.8626 | 0.8219 | 0.7835 | 0.7473 | 0.7130 | 0.6806 | 0.6499 | 0.6209 | 0.5674 |
6 | 0.8375 | 0.7903 | 0.7462 | 0.7050 | 0.6663 | 0.6302 | 0.5963 | 0.5645 | 0.5066 |
7 | 0.8131 | 0.7599 | 0.7107 | 0.6651 | 0.6227 | 0.5835 | 0.5470 | 0.5132 | 0.4523 |
8 | 0.7894 | 0.7307 | 0.6768 | 0.6274 | 0.5820 | 0.5403 | 0.5019 | 0.4665 | 0.4039 |
9 | 0.7664 | 0.7026 | 0.6446 | 0.5919 | 0.5439 | 0.5002 | 0.4604 | 0.4241 | 0.3606 |
10 | 0.7441 | 0.6756 | 0.6139 | 0.5584 | 0.5083 | 0.4632 | 0.4224 | 0.3855 | 0.3220 |
Future Value of 1
Periods | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10% | 12% |
3 | 1.0927 | 1.1249 | 1.1576 | 1.1910 | 1.2250 | 1.2597 | 1.2950 | 1.3310 | 1.4049 |
4 | 1.1255 | 1.1699 | 1.2155 | 1.2625 | 1.3108 | 1.3605 | 1.4116 | 1.4641 | 1.5735 |
5 | 1.1593 | 1.2167 | 1.2763 | 1.3382 | 1.4026 | 1.4693 | 1.5386 | 1.6105 | 1.7623 |
6 | 1.1941 | 1.2653 | 1.3401 | 1.4185 | 1.5007 | 1.5869 | 1.6771 | 1.7716 | 1.9738 |
7 | 1.2299 | 1.3159 | 1.4071 | 1.5036 | 1.6058 | 1.7138 | 1.8280 | 1.9487 | 2.2107 |
8 | 1.2668 | 1.3686 | 1.4775 | 1.5938 | 1.7182 | 1.8509 | 1.9926 | 2.1436 | 2.4760 |
9 | 1.3048 | 1.4233 | 1.5513 | 1.6895 | 1.8385 | 1.9990 | 2.1719 | 2.3579 | 2.7731 |
10 | 1.3439 | 1.4802 | 1.6289 | 1.7908 | 1.9672 | 2.1589 | 2.3674 | 2.5937 | 3.1058 |
Present Value of an Annuity of 1
Periods | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10% | 12% |
3 | 2.8286 | 2.7751 | 2.7232 | 2.6730 | 2.6243 | 2.5771 | 2.5313 | 2.4869 | 2.4018 |
4 | 3.7171 | 3.6299 | 3.5460 | 3.4651 | 3.3872 | 3.3121 | 3.2397 | 3.1699 | 3.0373 |
5 | 4.5797 | 4.4518 | 4.3295 | 4.2124 | 4.1002 | 3.9927 | 3.8897 | 3.7908 | 3.6048 |
6 | 5.4172 | 5.2421 | 5.0757 | 4.9173 | 4.7665 | 4.6229 | 4.4859 | 4.3553 | 4.1114 |
7 | 6.2303 | 6.0021 | 5.7864 | 5.5824 | 5.3893 | 5.2064 | 5.0330 | 4.8684 | 4.5638 |
8 | 7.0197 | 6.7327 | 6.4632 | 6.2098 | 5.9713 | 5.7466 | 5.5348 | 5.3349 | 4.9676 |
9 | 7.7861 | 7.4353 | 7.1078 | 6.8017 | 6.5152 | 6.2469 | 5.9952 | 5.7950 | 5.3282 |
10 | 8.5302 | 8.1109 | 7.7217 | 7.3601 | 7.0236 | 6.7101 | 6.4177 | 6.1446 | 5.6502 |
Future Value of an Annuity of 1
Periods | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10% | 12% |
3 | 3.0909 | 3.1216 | 3.1525 | 3.1836 | 3.2149 | 3.2464 | 3.2781 | 3.3100 | 3.3744 |
4 | 4.1836 | 4.2465 | 4.3101 | 4.3746 | 4.4399 | 4.5061 | 4.5731 | 4.6410 | 4.7793 |
5 | 5.3091 | 5.4163 | 5.5256 | 5.6371 | 5.7507 | 5.8666 | 5.9847 | 6.1051 | 6.3528 |
6 | 6.4684 | 6.6330 | 6.8019 | 6.9753 | 7.1533 | 7.3359 | 7.5233 | 7.7156 | 8.1152 |
7 | 7.6625 | 7.8983 | 8.1420 | 8.3938 | 8.6540 | 8.9228 | 9.2004 | 9.4872 | 10.0890 |
8 | 8.8923 | 9.2142 | 9.5491 | 9.8975 | 10.2598 | 10.6366 | 11.0285 | 11.4359 | 12.2997 |
9 | 10.1591 | 10.5828 | 11.0266 | 11.4913 | 11.9780 | 12.4876 | 13.0210 | 13.5795 | 14.7757 |
10 | 11.4639 | 12.0061 | 12.5779 | 13.1808 | 13.8164 | 14.4866 | 15.1929 | 15.9374 | 17.5487 |
Molly borrows money by promising to make a single payment of $100,000 at the end of 5 years. How much money is Molly able to borrow if the interest rate is 10%, compounded semiannually? (PV of $1, FV of $1, PVA of $1, and FVA of $1) (Use appropriate factor(s) from the tables provided.)
A) $38,550
B) $78,350
C) $62,090
D) $74,850
E) $61,390
Answer: E
Explanation: The PV factor on the Present Value table when n =10 and i = 5% is 0.6139
Present Value = Future Value × PV Factor
Present Value = $100,000 × 0.6139 = $61,390
Difficulty: 2 Medium
Topic: Present Value of a Single Amount
Learning Objective: B-P1 Apply present value concepts to a single amount by using interest tables.
Bloom's: Apply
AACSB: Analytical Thinking
AICPA: BB Industry; FN Decision Making
30) Present Value of 1
Periods | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10% | 12% |
3 | 0.9151 | 0.8890 | 0.8638 | 0.8396 | 0.8163 | 0.7938 | 0.7722 | 0.7513 | 0.7118 |
4 | 0.8885 | 0.8548 | 0.8227 | 0.7921 | 0.7629 | 0.7350 | 0.7084 | 0.6830 | 0.6355 |
5 | 0.8626 | 0.8219 | 0.7835 | 0.7473 | 0.7130 | 0.6806 | 0.6499 | 0.6209 | 0.5674 |
6 | 0.8375 | 0.7903 | 0.7462 | 0.7050 | 0.6663 | 0.6302 | 0.5963 | 0.5645 | 0.5066 |
7 | 0.8131 | 0.7599 | 0.7107 | 0.6651 | 0.6227 | 0.5835 | 0.5470 | 0.5132 | 0.4523 |
8 | 0.7894 | 0.7307 | 0.6768 | 0.6274 | 0.5820 | 0.5403 | 0.5019 | 0.4665 | 0.4039 |
9 | 0.7664 | 0.7026 | 0.6446 | 0.5919 | 0.5439 | 0.5002 | 0.4604 | 0.4241 | 0.3606 |
10 | 0.7441 | 0.6756 | 0.6139 | 0.5584 | 0.5083 | 0.4632 | 0.4224 | 0.3855 | 0.3220 |
Future Value of 1
Periods | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10% | 12% |
3 | 1.0927 | 1.1249 | 1.1576 | 1.1910 | 1.2250 | 1.2597 | 1.2950 | 1.3310 | 1.4049 |
4 | 1.1255 | 1.1699 | 1.2155 | 1.2625 | 1.3108 | 1.3605 | 1.4116 | 1.4641 | 1.5735 |
5 | 1.1593 | 1.2167 | 1.2763 | 1.3382 | 1.4026 | 1.4693 | 1.5386 | 1.6105 | 1.7623 |
6 | 1.1941 | 1.2653 | 1.3401 | 1.4185 | 1.5007 | 1.5869 | 1.6771 | 1.7716 | 1.9738 |
7 | 1.2299 | 1.3159 | 1.4071 | 1.5036 | 1.6058 | 1.7138 | 1.8280 | 1.9487 | 2.2107 |
8 | 1.2668 | 1.3686 | 1.4775 | 1.5938 | 1.7182 | 1.8509 | 1.9926 | 2.1436 | 2.4760 |
9 | 1.3048 | 1.4233 | 1.5513 | 1.6895 | 1.8385 | 1.9990 | 2.1719 | 2.3579 | 2.7731 |
10 | 1.3439 | 1.4802 | 1.6289 | 1.7908 | 1.9672 | 2.1589 | 2.3674 | 2.5937 | 3.1058 |
Present Value of an Annuity of 1
Periods | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10% | 12% |
3 | 2.8286 | 2.7751 | 2.7232 | 2.6730 | 2.6243 | 2.5771 | 2.5313 | 2.4869 | 2.4018 |
4 | 3.7171 | 3.6299 | 3.5460 | 3.4651 | 3.3872 | 3.3121 | 3.2397 | 3.1699 | 3.0373 |
5 | 4.5797 | 4.4518 | 4.3295 | 4.2124 | 4.1002 | 3.9927 | 3.8897 | 3.7908 | 3.6048 |
6 | 5.4172 | 5.2421 | 5.0757 | 4.9173 | 4.7665 | 4.6229 | 4.4859 | 4.3553 | 4.1114 |
7 | 6.2303 | 6.0021 | 5.7864 | 5.5824 | 5.3893 | 5.2064 | 5.0330 | 4.8684 | 4.5638 |
8 | 7.0197 | 6.7327 | 6.4632 | 6.2098 | 5.9713 | 5.7466 | 5.5348 | 5.3349 | 4.9676 |
9 | 7.7861 | 7.4353 | 7.1078 | 6.8017 | 6.5152 | 6.2469 | 5.9952 | 5.7950 | 5.3282 |
10 | 8.5302 | 8.1109 | 7.7217 | 7.3601 | 7.0236 | 6.7101 | 6.4177 | 6.1446 | 5.6502 |
Future Value of an Annuity of 1
Periods | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10% | 12% |
3 | 3.0909 | 3.1216 | 3.1525 | 3.1836 | 3.2149 | 3.2464 | 3.2781 | 3.3100 | 3.3744 |
4 | 4.1836 | 4.2465 | 4.3101 | 4.3746 | 4.4399 | 4.5061 | 4.5731 | 4.6410 | 4.7793 |
5 | 5.3091 | 5.4163 | 5.5256 | 5.6371 | 5.7507 | 5.8666 | 5.9847 | 6.1051 | 6.3528 |
6 | 6.4684 | 6.6330 | 6.8019 | 6.9753 | 7.1533 | 7.3359 | 7.5233 | 7.7156 | 8.1152 |
7 | 7.6625 | 7.8983 | 8.1420 | 8.3938 | 8.6540 | 8.9228 | 9.2004 | 9.4872 | 10.0890 |
8 | 8.8923 | 9.2142 | 9.5491 | 9.8975 | 10.2598 | 10.6366 | 11.0285 | 11.4359 | 12.2997 |
9 | 10.1591 | 10.5828 | 11.0266 | 11.4913 | 11.9780 | 12.4876 | 13.0210 | 13.5795 | 14.7757 |
10 | 11.4639 | 12.0061 | 12.5779 | 13.1808 | 13.8164 | 14.4866 | 15.1929 | 15.9374 | 17.5487 |
Jason has a loan that requires a single payment of $4,000 at the end of 3 years. The loan's interest rate is 6%, compounded semiannually. How much did Jason borrow? (PV of $1, FV of $1, PVA of $1, and FVA of $1) (Use appropriate factor(s) from the tables provided.)
A) $3,358.40
B) $4,000.00
C) $3,660.40
D) $4,776.40
E) $3,350.00
Answer: E
Explanation: 3 years = 6 semiannual periods; 6% annual interest = 3% semiannually
The PV factor on the Present Value table when n = 6 and i = 3% is 0.8375
Present Value = Future Value × PV Factor
Present Value = $4,000 × 0.8375 = $3,350.00
Difficulty: 3 Hard
Topic: Present Value of a Single Amount
Learning Objective: B-P1 Apply present value concepts to a single amount by using interest tables.
Bloom's: Apply
AACSB: Analytical Thinking
AICPA: BB Industry; FN Decision Making
31) Present Value of 1
Periods | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10% | 12% |
3 | 0.9151 | 0.8890 | 0.8638 | 0.8396 | 0.8163 | 0.7938 | 0.7722 | 0.7513 | 0.7118 |
4 | 0.8885 | 0.8548 | 0.8227 | 0.7921 | 0.7629 | 0.7350 | 0.7084 | 0.6830 | 0.6355 |
5 | 0.8626 | 0.8219 | 0.7835 | 0.7473 | 0.7130 | 0.6806 | 0.6499 | 0.6209 | 0.5674 |
6 | 0.8375 | 0.7903 | 0.7462 | 0.7050 | 0.6663 | 0.6302 | 0.5963 | 0.5645 | 0.5066 |
7 | 0.8131 | 0.7599 | 0.7107 | 0.6651 | 0.6227 | 0.5835 | 0.5470 | 0.5132 | 0.4523 |
8 | 0.7894 | 0.7307 | 0.6768 | 0.6274 | 0.5820 | 0.5403 | 0.5019 | 0.4665 | 0.4039 |
9 | 0.7664 | 0.7026 | 0.6446 | 0.5919 | 0.5439 | 0.5002 | 0.4604 | 0.4241 | 0.3606 |
10 | 0.7441 | 0.6756 | 0.6139 | 0.5584 | 0.5083 | 0.4632 | 0.4224 | 0.3855 | 0.3220 |
Future Value of 1
Periods | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10% | 12% |
3 | 1.0927 | 1.1249 | 1.1576 | 1.1910 | 1.2250 | 1.2597 | 1.2950 | 1.3310 | 1.4049 |
4 | 1.1255 | 1.1699 | 1.2155 | 1.2625 | 1.3108 | 1.3605 | 1.4116 | 1.4641 | 1.5735 |
5 | 1.1593 | 1.2167 | 1.2763 | 1.3382 | 1.4026 | 1.4693 | 1.5386 | 1.6105 | 1.7623 |
6 | 1.1941 | 1.2653 | 1.3401 | 1.4185 | 1.5007 | 1.5869 | 1.6771 | 1.7716 | 1.9738 |
7 | 1.2299 | 1.3159 | 1.4071 | 1.5036 | 1.6058 | 1.7138 | 1.8280 | 1.9487 | 2.2107 |
8 | 1.2668 | 1.3686 | 1.4775 | 1.5938 | 1.7182 | 1.8509 | 1.9926 | 2.1436 | 2.4760 |
9 | 1.3048 | 1.4233 | 1.5513 | 1.6895 | 1.8385 | 1.9990 | 2.1719 | 2.3579 | 2.7731 |
10 | 1.3439 | 1.4802 | 1.6289 | 1.7908 | 1.9672 | 2.1589 | 2.3674 | 2.5937 | 3.1058 |
Present Value of an Annuity of 1
Periods | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10% | 12% |
3 | 2.8286 | 2.7751 | 2.7232 | 2.6730 | 2.6243 | 2.5771 | 2.5313 | 2.4869 | 2.4018 |
4 | 3.7171 | 3.6299 | 3.5460 | 3.4651 | 3.3872 | 3.3121 | 3.2397 | 3.1699 | 3.0373 |
5 | 4.5797 | 4.4518 | 4.3295 | 4.2124 | 4.1002 | 3.9927 | 3.8897 | 3.7908 | 3.6048 |
6 | 5.4172 | 5.2421 | 5.0757 | 4.9173 | 4.7665 | 4.6229 | 4.4859 | 4.3553 | 4.1114 |
7 | 6.2303 | 6.0021 | 5.7864 | 5.5824 | 5.3893 | 5.2064 | 5.0330 | 4.8684 | 4.5638 |
8 | 7.0197 | 6.7327 | 6.4632 | 6.2098 | 5.9713 | 5.7466 | 5.5348 | 5.3349 | 4.9676 |
9 | 7.7861 | 7.4353 | 7.1078 | 6.8017 | 6.5152 | 6.2469 | 5.9952 | 5.7950 | 5.3282 |
10 | 8.5302 | 8.1109 | 7.7217 | 7.3601 | 7.0236 | 6.7101 | 6.4177 | 6.1446 | 5.6502 |
C) $6,000
D) $8,836
E) $8,306
Answer: A
Explanation: The PV factor on the Present Value table when n = 6 and i = 6% is 0.7050
Present Value = Future Value × PV Factor
Present Value = $10,000 × 0.7050 = $7,050.00
Difficulty: 2 Medium
Topic: Present Value of a Single Amount
Learning Objective: B-P1 Apply present value concepts to a single amount by using interest tables.
Bloom's: Apply
AACSB: Analytical Thinking
AICPA: BB Industry; FN Decision Making
32) Present Value of 1
Periods | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10% | 12% |
3 | 0.9151 | 0.8890 | 0.8638 | 0.8396 | 0.8163 | 0.7938 | 0.7722 | 0.7513 | 0.7118 |
4 | 0.8885 | 0.8548 | 0.8227 | 0.7921 | 0.7629 | 0.7350 | 0.7084 | 0.6830 | 0.6355 |
5 | 0.8626 | 0.8219 | 0.7835 | 0.7473 | 0.7130 | 0.6806 | 0.6499 | 0.6209 | 0.5674 |
6 | 0.8375 | 0.7903 | 0.7462 | 0.7050 | 0.6663 | 0.6302 | 0.5963 | 0.5645 | 0.5066 |
7 | 0.8131 | 0.7599 | 0.7107 | 0.6651 | 0.6227 | 0.5835 | 0.5470 | 0.5132 | 0.4523 |
8 | 0.7894 | 0.7307 | 0.6768 | 0.6274 | 0.5820 | 0.5403 | 0.5019 | 0.4665 | 0.4039 |
9 | 0.7664 | 0.7026 | 0.6446 | 0.5919 | 0.5439 | 0.5002 | 0.4604 | 0.4241 | 0.3606 |
10 | 0.7441 | 0.6756 | 0.6139 | 0.5584 | 0.5083 | 0.4632 | 0.4224 | 0.3855 | 0.3220 |
Future Value of 1
Periods | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10% | 12% |
3 | 1.0927 | 1.1249 | 1.1576 | 1.1910 | 1.2250 | 1.2597 | 1.2950 | 1.3310 | 1.4049 |
4 | 1.1255 | 1.1699 | 1.2155 | 1.2625 | 1.3108 | 1.3605 | 1.4116 | 1.4641 | 1.5735 |
5 | 1.1593 | 1.2167 | 1.2763 | 1.3382 | 1.4026 | 1.4693 | 1.5386 | 1.6105 | 1.7623 |
6 | 1.1941 | 1.2653 | 1.3401 | 1.4185 | 1.5007 | 1.5869 | 1.6771 | 1.7716 | 1.9738 |
7 | 1.2299 | 1.3159 | 1.4071 | 1.5036 | 1.6058 | 1.7138 | 1.8280 | 1.9487 | 2.2107 |
8 | 1.2668 | 1.3686 | 1.4775 | 1.5938 | 1.7182 | 1.8509 | 1.9926 | 2.1436 | 2.4760 |
9 | 1.3048 | 1.4233 | 1.5513 | 1.6895 | 1.8385 | 1.9990 | 2.1719 | 2.3579 | 2.7731 |
10 | 1.3439 | 1.4802 | 1.6289 | 1.7908 | 1.9672 | 2.1589 | 2.3674 | 2.5937 | 3.1058 |
Present Value of an Annuity of 1
Periods | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10% | 12% |
3 | 2.8286 | 2.7751 | 2.7232 | 2.6730 | 2.6243 | 2.5771 | 2.5313 | 2.4869 | 2.4018 |
4 | 3.7171 | 3.6299 | 3.5460 | 3.4651 | 3.3872 | 3.3121 | 3.2397 | 3.1699 | 3.0373 |
5 | 4.5797 | 4.4518 | 4.3295 | 4.2124 | 4.1002 | 3.9927 | 3.8897 | 3.7908 | 3.6048 |
6 | 5.4172 | 5.2421 | 5.0757 | 4.9173 | 4.7665 | 4.6229 | 4.4859 | 4.3553 | 4.1114 |
7 | 6.2303 | 6.0021 | 5.7864 | 5.5824 | 5.3893 | 5.2064 | 5.0330 | 4.8684 | 4.5638 |
8 | 7.0197 | 6.7327 | 6.4632 | 6.2098 | 5.9713 | 5.7466 | 5.5348 | 5.3349 | 4.9676 |
9 | 7.7861 | 7.4353 | 7.1078 | 6.8017 | 6.5152 | 6.2469 | 5.9952 | 5.7950 | 5.3282 |
10 | 8.5302 | 8.1109 | 7.7217 | 7.3601 | 7.0236 | 6.7101 | 6.4177 | 6.1446 | 5.6502 |
Future Value of an Annuity of 1
Periods | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10% | 12% |
3 | 3.0909 | 3.1216 | 3.1525 | 3.1836 | 3.2149 | 3.2464 | 3.2781 | 3.3100 | 3.3744 |
4 | 4.1836 | 4.2465 | 4.3101 | 4.3746 | 4.4399 | 4.5061 | 4.5731 | 4.6410 | 4.7793 |
5 | 5.3091 | 5.4163 | 5.5256 | 5.6371 | 5.7507 | 5.8666 | 5.9847 | 6.1051 | 6.3528 |
6 | 6.4684 | 6.6330 | 6.8019 | 6.9753 | 7.1533 | 7.3359 | 7.5233 | 7.7156 | 8.1152 |
7 | 7.6625 | 7.8983 | 8.1420 | 8.3938 | 8.6540 | 8.9228 | 9.2004 | 9.4872 | 10.0890 |
8 | 8.8923 | 9.2142 | 9.5491 | 9.8975 | 10.2598 | 10.6366 | 11.0285 | 11.4359 | 12.2997 |
9 | 10.1591 | 10.5828 | 11.0266 | 11.4913 | 11.9780 | 12.4876 | 13.0210 | 13.5795 | 14.7757 |
10 | 11.4639 | 12.0061 | 12.5779 | 13.1808 | 13.8164 | 14.4866 | 15.1929 | 15.9374 | 17.5487 |
Paul wants to invest a sum of money today that will accumulate to $50,000 at the end of 4 years. Assuming he can earn an interest rate of 8% compounded semiannually, how much must he invest today? (PV of $1, FV of $1, PVA of $1, and FVA of $1) (Use appropriate factor(s) from the tables provided.)
A) $36,535
B) $27,015
C) $42,740
D) $36,750
E) $31,414
Answer: A
Explanation: The PV factor on the Present Value table when n = 8 and i = 4% is 0.7307
Present Value = Future Value × PV Factor
Present Value = $50,000 × 0.7307 = $36,535.
Difficulty: 2 Medium
Topic: Present Value of a Single Amount
Learning Objective: B-P1 Apply present value concepts to a single amount by using interest tables.
Bloom's: Apply
AACSB: Analytical Thinking
AICPA: BB Industry; FN Decision Making
33) Present Value of 1
Periods | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10% | 12% |
3 | 0.9151 | 0.8890 | 0.8638 | 0.8396 | 0.8163 | 0.7938 | 0.7722 | 0.7513 | 0.7118 |
4 | 0.8885 | 0.8548 | 0.8227 | 0.7921 | 0.7629 | 0.7350 | 0.7084 | 0.6830 | 0.6355 |
5 | 0.8626 | 0.8219 | 0.7835 | 0.7473 | 0.7130 | 0.6806 | 0.6499 | 0.6209 | 0.5674 |
6 | 0.8375 | 0.7903 | 0.7462 | 0.7050 | 0.6663 | 0.6302 | 0.5963 | 0.5645 | 0.5066 |
7 | 0.8131 | 0.7599 | 0.7107 | 0.6651 | 0.6227 | 0.5835 | 0.5470 | 0.5132 | 0.4523 |
8 | 0.7894 | 0.7307 | 0.6768 | 0.6274 | 0.5820 | 0.5403 | 0.5019 | 0.4665 | 0.4039 |
9 | 0.7664 | 0.7026 | 0.6446 | 0.5919 | 0.5439 | 0.5002 | 0.4604 | 0.4241 | 0.3606 |
10 | 0.7441 | 0.6756 | 0.6139 | 0.5584 | 0.5083 | 0.4632 | 0.4224 | 0.3855 | 0.3220 |
Future Value of 1
Periods | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10% | 12% |
3 | 1.0927 | 1.1249 | 1.1576 | 1.1910 | 1.2250 | 1.2597 | 1.2950 | 1.3310 | 1.4049 |
4 | 1.1255 | 1.1699 | 1.2155 | 1.2625 | 1.3108 | 1.3605 | 1.4116 | 1.4641 | 1.5735 |
5 | 1.1593 | 1.2167 | 1.2763 | 1.3382 | 1.4026 | 1.4693 | 1.5386 | 1.6105 | 1.7623 |
6 | 1.1941 | 1.2653 | 1.3401 | 1.4185 | 1.5007 | 1.5869 | 1.6771 | 1.7716 | 1.9738 |
7 | 1.2299 | 1.3159 | 1.4071 | 1.5036 | 1.6058 | 1.7138 | 1.8280 | 1.9487 | 2.2107 |
8 | 1.2668 | 1.3686 | 1.4775 | 1.5938 | 1.7182 | 1.8509 | 1.9926 | 2.1436 | 2.4760 |
9 | 1.3048 | 1.4233 | 1.5513 | 1.6895 | 1.8385 | 1.9990 | 2.1719 | 2.3579 | 2.7731 |
10 | 1.3439 | 1.4802 | 1.6289 | 1.7908 | 1.9672 | 2.1589 | 2.3674 | 2.5937 | 3.1058 |
Present Value of an Annuity of 1
Periods | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10% | 12% |
3 | 2.8286 | 2.7751 | 2.7232 | 2.6730 | 2.6243 | 2.5771 | 2.5313 | 2.4869 | 2.4018 |
4 | 3.7171 | 3.6299 | 3.5460 | 3.4651 | 3.3872 | 3.3121 | 3.2397 | 3.1699 | 3.0373 |
5 | 4.5797 | 4.4518 | 4.3295 | 4.2124 | 4.1002 | 3.9927 | 3.8897 | 3.7908 | 3.6048 |
6 | 5.4172 | 5.2421 | 5.0757 | 4.9173 | 4.7665 | 4.6229 | 4.4859 | 4.3553 | 4.1114 |
7 | 6.2303 | 6.0021 | 5.7864 | 5.5824 | 5.3893 | 5.2064 | 5.0330 | 4.8684 | 4.5638 |
8 | 7.0197 | 6.7327 | 6.4632 | 6.2098 | 5.9713 | 5.7466 | 5.5348 | 5.3349 | 4.9676 |
9 | 7.7861 | 7.4353 | 7.1078 | 6.8017 | 6.5152 | 6.2469 | 5.9952 | 5.7950 | 5.3282 |
10 | 8.5302 | 8.1109 | 7.7217 | 7.3601 | 7.0236 | 6.7101 | 6.4177 | 6.1446 | 5.6502 |
Future Value of an Annuity of 1
Periods | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10% | 12% |
3 | 3.0909 | 3.1216 | 3.1525 | 3.1836 | 3.2149 | 3.2464 | 3.2781 | 3.3100 | 3.3744 |
4 | 4.1836 | 4.2465 | 4.3101 | 4.3746 | 4.4399 | 4.5061 | 4.5731 | 4.6410 | 4.7793 |
5 | 5.3091 | 5.4163 | 5.5256 | 5.6371 | 5.7507 | 5.8666 | 5.9847 | 6.1051 | 6.3528 |
6 | 6.4684 | 6.6330 | 6.8019 | 6.9753 | 7.1533 | 7.3359 | 7.5233 | 7.7156 | 8.1152 |
7 | 7.6625 | 7.8983 | 8.1420 | 8.3938 | 8.6540 | 8.9228 | 9.2004 | 9.4872 | 10.0890 |
8 | 8.8923 | 9.2142 | 9.5491 | 9.8975 | 10.2598 | 10.6366 | 11.0285 | 11.4359 | 12.2997 |
9 | 10.1591 | 10.5828 | 11.0266 | 11.4913 | 11.9780 | 12.4876 | 13.0210 | 13.5795 | 14.7757 |
10 | 11.4639 | 12.0061 | 12.5779 | 13.1808 | 13.8164 | 14.4866 | 15.1929 | 15.9374 | 17.5487 |
Marshall has received an inheritance and wants to invest a sum of money today that will yield $5,000 at the end of each of the next 10 years. Assuming he can earn an interest rate of 5% compounded annually, how much of his inheritance must he invest today? (PV of $1, FV of $1, PVA of $1, and FVA of $1) (Use appropriate factor(s) from the tables provided.)
A) $50,000.00
B) $47,500.00
C) $45,125.00
D) $38,608.50
E) $100,000.00
Answer: D
Explanation: The PV factor on the Present Value of an Annuity table when n = 10 and i = 5% is 7.7217
Present Value = Future Annuity Value × PV Factor
Present Value = $5,000 × 7.7217 = $38,608.50
Difficulty: 2 Medium
Topic: Present Value of an Annuity
Learning Objective: B-P3 Apply present value concepts to an annuity by using interest tables.
Bloom's: Apply
AACSB: Analytical Thinking
AICPA: BB Industry; FN Decision Making
34) Present Value of 1
Periods | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10% | 12% |
3 | 0.9151 | 0.8890 | 0.8638 | 0.8396 | 0.8163 | 0.7938 | 0.7722 | 0.7513 | 0.7118 |
4 | 0.8885 | 0.8548 | 0.8227 | 0.7921 | 0.7629 | 0.7350 | 0.7084 | 0.6830 | 0.6355 |
5 | 0.8626 | 0.8219 | 0.7835 | 0.7473 | 0.7130 | 0.6806 | 0.6499 | 0.6209 | 0.5674 |
6 | 0.8375 | 0.7903 | 0.7462 | 0.7050 | 0.6663 | 0.6302 | 0.5963 | 0.5645 | 0.5066 |
7 | 0.8131 | 0.7599 | 0.7107 | 0.6651 | 0.6227 | 0.5835 | 0.5470 | 0.5132 | 0.4523 |
8 | 0.7894 | 0.7307 | 0.6768 | 0.6274 | 0.5820 | 0.5403 | 0.5019 | 0.4665 | 0.4039 |
9 | 0.7664 | 0.7026 | 0.6446 | 0.5919 | 0.5439 | 0.5002 | 0.4604 | 0.4241 | 0.3606 |
10 | 0.7441 | 0.6756 | 0.6139 | 0.5584 | 0.5083 | 0.4632 | 0.4224 | 0.3855 | 0.3220 |
Future Value of 1
Periods | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10% | 12% |
3 | 1.0927 | 1.1249 | 1.1576 | 1.1910 | 1.2250 | 1.2597 | 1.2950 | 1.3310 | 1.4049 |
4 | 1.1255 | 1.1699 | 1.2155 | 1.2625 | 1.3108 | 1.3605 | 1.4116 | 1.4641 | 1.5735 |
5 | 1.1593 | 1.2167 | 1.2763 | 1.3382 | 1.4026 | 1.4693 | 1.5386 | 1.6105 | 1.7623 |
6 | 1.1941 | 1.2653 | 1.3401 | 1.4185 | 1.5007 | 1.5869 | 1.6771 | 1.7716 | 1.9738 |
7 | 1.2299 | 1.3159 | 1.4071 | 1.5036 | 1.6058 | 1.7138 | 1.8280 | 1.9487 | 2.2107 |
8 | 1.2668 | 1.3686 | 1.4775 | 1.5938 | 1.7182 | 1.8509 | 1.9926 | 2.1436 | 2.4760 |
9 | 1.3048 | 1.4233 | 1.5513 | 1.6895 | 1.8385 | 1.9990 | 2.1719 | 2.3579 | 2.7731 |
10 | 1.3439 | 1.4802 | 1.6289 | 1.7908 | 1.9672 | 2.1589 | 2.3674 | 2.5937 | 3.1058 |
Present Value of an Annuity of 1
Periods | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10% | 12% |
3 | 2.8286 | 2.7751 | 2.7232 | 2.6730 | 2.6243 | 2.5771 | 2.5313 | 2.4869 | 2.4018 |
4 | 3.7171 | 3.6299 | 3.5460 | 3.4651 | 3.3872 | 3.3121 | 3.2397 | 3.1699 | 3.0373 |
5 | 4.5797 | 4.4518 | 4.3295 | 4.2124 | 4.1002 | 3.9927 | 3.8897 | 3.7908 | 3.6048 |
6 | 5.4172 | 5.2421 | 5.0757 | 4.9173 | 4.7665 | 4.6229 | 4.4859 | 4.3553 | 4.1114 |
7 | 6.2303 | 6.0021 | 5.7864 | 5.5824 | 5.3893 | 5.2064 | 5.0330 | 4.8684 | 4.5638 |
8 | 7.0197 | 6.7327 | 6.4632 | 6.2098 | 5.9713 | 5.7466 | 5.5348 | 5.3349 | 4.9676 |
9 | 7.7861 | 7.4353 | 7.1078 | 6.8017 | 6.5152 | 6.2469 | 5.9952 | 5.7950 | 5.3282 |
10 | 8.5302 | 8.1109 | 7.7217 | 7.3601 | 7.0236 | 6.7101 | 6.4177 | 6.1446 | 5.6502 |
Future Value of an Annuity of 1
Periods | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10% | 12% |
3 | 3.0909 | 3.1216 | 3.1525 | 3.1836 | 3.2149 | 3.2464 | 3.2781 | 3.3100 | 3.3744 |
4 | 4.1836 | 4.2465 | 4.3101 | 4.3746 | 4.4399 | 4.5061 | 4.5731 | 4.6410 | 4.7793 |
5 | 5.3091 | 5.4163 | 5.5256 | 5.6371 | 5.7507 | 5.8666 | 5.9847 | 6.1051 | 6.3528 |
6 | 6.4684 | 6.6330 | 6.8019 | 6.9753 | 7.1533 | 7.3359 | 7.5233 | 7.7156 | 8.1152 |
7 | 7.6625 | 7.8983 | 8.1420 | 8.3938 | 8.6540 | 8.9228 | 9.2004 | 9.4872 | 10.0890 |
8 | 8.8923 | 9.2142 | 9.5491 | 9.8975 | 10.2598 | 10.6366 | 11.0285 | 11.4359 | 12.2997 |
9 | 10.1591 | 10.5828 | 11.0266 | 11.4913 | 11.9780 | 12.4876 | 13.0210 | 13.5795 | 14.7757 |
10 | 11.4639 | 12.0061 | 12.5779 | 13.1808 | 13.8164 | 14.4866 | 15.1929 | 15.9374 | 17.5487 |
Cody invests $1,800 per year from his summer wages at a 4% annual interest rate. He plans to take a European vacation at the end of 4 years when he graduates from college. How much will he have available to spend on his vacation? (PV of $1, FV of $1, PVA of $1, and FVA of $1) (Use appropriate factor(s) from the tables provided.)
A) $7,787.52
B) $7,488.00
C) $6,912.00
D) $7,200.00
E) $7,643.70